Month: April 2018

Apr 30: Marilyn Walker: Modeling Narrative Structure in Informal First-Person Narratives

Please join us for the last NLP Seminar of the semester on Monday, April 30,  at 4:00pm in 202 South Hall.   All are welcome!

Speaker:  Marilyn Walker (UCSC)

Title:  Modeling Narrative Structure in Informal First-Person Narratives

Abstract: 

Many genres of natural language text are narratively structured, reflecting the human bias towards organizing our experiences as narratives. Understanding narrative structure in full requires many discourse-level NLP components, including modeling the motivations, goals and desires of the protagonists, modelling the affect states of the protagonists and their transitions across story timepoints, and modelling the causal links between story events. This talk will focus on our recent work on modeling first-person participant goals and desires and their outcomes. I describe DesireDB, a collection of personal first-person stories from the Spinn3r corpus, which are annotated for statements of desire, textual evidence for desire fulfillment, and whether the stated desire is fulfilled given the evidence in the narrative context. I will describe experiments on tracking desire fulfillment using different methods, and show that a LSTM Skip-Thought model using the context both before and after the desire statement achieves an F-Measure of 0.7 on the corpus. I will also briefly discuss our work on modelling affect states and causal links between story events on the same corpus of informal stories.

The presented work was jointly conducted with Elahe Rahimtoroghi, Jiaqi Wu, Pranav Anand, Ruimin Wang, Lena Reed and Shereen Oraby.

Biography:

Marilyn Walker, is a Professor of Computer Science at UC Santa Cruz, and a fellow of the Association for Computational Linguistics (ACL), in recognition of her for fundamental contributions to statistical methods for dialog optimization, to centering theory, and to expressive generation for dialog. Her current research includes work on computational models of dialogue interaction and conversational agents, analysis of affect, sarcasm and other social phenomena in social media dialogue, acquiring causal knowledge from text, conversational summarization, interactive story and narrative generation, and statistical methods for training the dialogue manager and the language generation engine for dialogue systems.

Before coming to Santa Cruz in 2009, Walker was a professor of computer science at the University of Sheffield. From 1996 to 2003, she was a principal member of the research staff at AT&T Bell Labs and AT&T Research, where she worked on the AT&T Communicator project, developing a new architecture for spoken dialogue systems and statistical methods for dialogue management and generation. Walker has published more than 200 papers and has more than 10 U.S. patents granted. She earned an M.S. in computer science at Stanford University, and a Ph.D. in computer science at the University of Pennsylvania.

Mon Apr 16: Amber Boydstun: How Surges in Dominant Media Narratives Move Public Opinion

Please join us for our NLP Seminar next Monday, April 16, at 4:00pm in 202 South Hall.

Speaker: Amber Boydstun (Associate Professor of Political Science, UC Davis)

Title: How Surges in Dominant Media Narratives Move Public Opinion

Abstract:

Studies examining the potential effects of media coverage on public attitudes toward policy issues (e.g., abortion, capital punishment) have identified three variables that, depending on the issue, can wield significant influence: the tone of the coverage (positive/negative/neutral), the frames used (e.g., discussing the issue from an economic vs. a moral perspective), and the overall level of media attention to the issue.  Yet, to date, no study has examined all three variables in combination.  We fill this gap by building a theoretical argument for why, despite the important variance across different issues, in general a single measure should be able to predict significant shifts in public opinion: surges in media attention to “dominant media narratives,” or stories that consistently frame the issue the same way (e.g., economic) using the same tone (e.g., anti-immigration) relative to other competing narratives.  We test this hypothesis in U.S. newspaper coverage to three very different policy issues—immigration, same-sex marriage, and gun control—from 1992 to 2012.  We use manual content analysis linked with computational modeling, tracking tone (pro/anti/neutral), emphasis frames (e.g., economic, morality), and overall levels of attention. Using time series analysis of public opinion data, we show that, for all three issues, previous surges in dominant media narratives significantly shape opinion.  In short, when media coverage converges around a unified way of describing a policy issue, the public tends to follow.  Our study adds to the fields of political communication and public opinion and marks an advance in computational text analysis methods.  (Joint work with Dallas Card and Noah Smith)