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Natural Language Inference. (MacCartney PhD Thesis 2009)



Natural Language Inference

A man Is pointing at a silver sedan.

Last December they had argued that the councll
had failed to consider possible environmental
effects of contaminated land at the site.



Natural Language Inference

A man Is at a

Last December they had argued that the councll
had failed to consider possible environmental
effects of contaminated land at the site.



Natural Language Inference

A man Is at a

Last December they had the councll
had
of contaminated land at the site.



Natural Language Inference

Question Answering
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had
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Did the councill the ?

Yes/No
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Summarization

Last December they had argued that the council
had
of contaminated land at the site.

They argued that the councill
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Dialogue

that on Saturday.

Remove from calendar?
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 We want to get out of the “lab” and model
language that people actually use

 We want rules for logical composition that are
descriptive rather than prescriptive based on
judgements by real people

* We want methods that are derived from data,
rather than reliant on lexicons or ontologies



Last December they had argued that the council had
failed to consider possible effects of contaminated land
at the site.
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Monolingual Features

symmetric and asymmetric similarities based on
dependency context
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Discovery of Inference Rules from Text. (Lin and Pantel SIGKDD 2001)
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Monolingual Features

lexico-syntactic patterns

...If this can happen to my little girl , it can happen to other Kids. ..

<-nmod-
]<-conj-
<-pobj-

advcl

" happen] -advcl->[happen] —nmod->[Y] :1
Y] :1

as]<-prep-lknow]<-rcmod-[Y]:1

Automatic acquisition of hyponyms from large text corpora. (Hearst COLING 1992)
Semantic taxonomy induction from heterogenous evidence. (Snow et al. ACL 2006)
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Equivalent Entailment  Exclusion Other Independent

look at/ . e . .

watch ittle girl/girl close/open swim/water  girl/play
a person/ kuwait/ mm.|r.nal/ husband/ found/party
SOMeone country  significant marry

Clean/ tolvve.r/ boy/ypung oll/oll price  man/talk
cleanse building girl

distant/ sneaker/ nobody/ Couptry/ orofitlyear

remote footwear  someone  patriotic

phone/ drive/ holiday/

heroin/drug blue/green

telephone vehicle series

last autumn/ typhoon/ france/ , |
ast fall storm germany playing/toy city/south

Adding Semantics to Data-Driven Paraphrasing. (Pavlick et al. ACL 2015)
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entail environmental consequence”
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Natural Language Inference. (MacCartney PhD Thesis 2009)



Natural Language Inference

From image descriptions to visual denotations.
(Young et al. TACL 2014)

Entailment above the word level in distributional semantics.
(Baroni et al. EACL 2012)

A man is pointing at a car.

A man is pointing at a car. DEL( ) |: Ves

BIUTEE: A Modular Open-Source System for Recognizing
lextual Entailment (Stern and Dagan. ACL 2012)

Natural Language Inference. (MacCartney PhD Thesis 2009)
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The polic uences.

environmental
conseqguences

Does consequence x
entail environmental consequence”
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The contamina onsequences.

environmental
conseqguences

Does consequence V
entail environmental consequence”
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Up to 53% error rate by assuming all
adjectives are restrictive.

Image Captions Literature News Forums
° o
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Compositional Entailment in Adjective Nouns. (Paviick and Callison-Burch ACL 2016)
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Sometimes, it is a property of the adjective and noun...

tropical
crowded
empty rural
pebble darrow
rocky snowy
wet paved
muddy grassy rocky wooded
busy W sandy sandy leafy  Marked
Probably not true Could go either way Probably true Probably not true Could go either way Probably true
beach path
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Compositional Entailment in Adjective Nouns. (Paviick and Callison-Burch ACL 2016)
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...0r even just the adjective.
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When does N entail AN?

Other times, it is a property of the context+word knowledge.

Equivalence [ an

The [deadly] attack killed at least 12 civilians.

The [entire] bill is now subject to approval by
the parliament.

Compositional Entailment in Adjective Nouns. (Paviick and Callison-Burch ACL 2016)
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When does N ‘entail AN?

Other times, it is a property of the context+word knowledge.

Alternation N AN

Red numbers spelled out their [perfect]| record: 9-2.

Schilling even stayed busy after serving Epstein
turkey at his [former] home on Thursday.

Compositional Entailment in Adjective Nouns. (Paviick and Callison-Burch ACL 2016)
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oA
When does N ‘entail AN?

Other times, it is a property of the context+word knowledge.

Undefined Relations

No N s aln AN,
buk every AN is an N.

Bush travels Monday to Michigan to make remarks
on the [Japanese]| economy.

Compositional Entailment in Adjective Nouns. (Paviick and Callison-Burch ACL 2016)
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fake
former
artificial
counterfeit
possible
porobable
unlikely
iIkely

A dictionary of nonsubsective adjectives. (Nayak et al. Tech Report 2014)
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modifiers
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should V\Q«
When dees N ‘entail AN?

Plain Non-subsective
(e.q. alleged)

She was the expected winner.
She was the winner.

Actually behave like normal,
subsective ad jectives (e.q. red).

To deal with an expected surge In
unemployment, the plan includes a huge
temporary jobs program.

observed predicted

Contradiction Unknown Entailment

So-Called Non-Subsective Adjectives. (Pavlick and Callison-Burch *SEM 2016, Best Paper!)



should V\Q«
When dees N ‘entail AN?

Privative
(e.q. fake)

She was carrying a fake gun.

@ She was carrying a gun.

B [nserting
B Deleting

predicted

Contradiction Unknown Entailment

So-Called Non-Subsective Adjectives. (Pavlick and Callison-Burch *SEM 2016, Best Paper!)
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observed predicted
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When dees N ‘entail AN?

Privative
(e.q. fake)

She was carrying a fake gun.

@ She was carrying a gun.

Pont behave sjmmeﬁriaauj.

The 27-year-old Gazan seeks an id to
get through security checkpoints and
find work in Cairo.

Does he seek a fake id?

observed predicted

Contradiction Unknown Entailment

(a) Privative

So-Called Non-Subsective Adjectives. (Pavlick and Callison-Burch *SEM 2016, Best Paper!)
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should V\Q«
When dees N ‘entail AN?

Privative
(e.q. fake)

She was carrying a fake gun.

@ She was carrying a gun.

Pont behave sjmmeﬁriaauj.

The 27-year-old Gazan seeks a fake id
to get through security checkpoints
and find work in Cairo.

Does he seek a id?

observed predicted

Contradiction Unknown Entailment

(a) Privative

So-Called Non-Subsective Adjectives. (Pavlick and Callison-Burch *SEM 2016, Best Paper!)
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on the American economy.
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Bush travels Monday to Michigan to make remarks
on the economy.

Bush travels Monday to Michigan to make remarks
on the American economy.

x Bush travels Monday to Michigan to make remarks
on the Japanese economy.

Compositional Entailment in Adjective Nouns. (Paviick and Callison-Burch ACL 2016)
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" Bush travels Monday to Michigan to make remarks
on the American economy.

x Bush travels Monday to Michigan to make remarks
on the Japanese economy.

Compositional Entailment in Adjective Nouns. (Paviick and Callison-Burch ACL 2016)



Does N entail AN?

x Bush travels Monday to Michigan to make remarks
on the Japanese economy.

Compositional Entailment in Adjective Nouns. (Paviick and Callison-Burch ACL 2016)
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100
34

68

Accuracy

52

36

20
Human  Most Freq. MFC BOW BOV MaxEnt LSTM Trans.

Class by Adj. +LR

Compositional Entailment in Adjective Nouns. (Paviick and Callison-Burch ACL 2016)
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Accuracy

Human  Most Freq. MFC BOW BOV MaxEnt LSTM Trans.
Class by Adj. +LR

Compositional Entailment in Adjective Nouns. (Paviick and Callison-Burch ACL 2016)
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Accuracy

Human  Most Freq. MFC BOW BOV MaxEnt LSTM Trans.
Class by Adj. +LR

Compositional Entailment in Adjective Nouns. (Paviick and Callison-Burch ACL 2016)
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Pretty strong baselines

Accuracy

Human  Most Freq. MFC BOW BOV MaxEnt LSTM Trans.
Class by Adj. +LR

Compositional Entailment in Adjective Nouns. (Pavlick and Callison-Burch ACL 2016)
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Supervised Model using involved NLP pipeline
(Magnini et al. 2014)

Accuracy

Human  Most Freq. MFC BOW BOV MaxEnt LSTM Trans.
Class by Adj. +LR

Compositional Entailment in Adjective Nouns. (Pavlick and Callison-Burch ACL 2016)
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Several DNN Models
(Bowman et al. 2015)

Accuracy

Human  Most Freq. MFC BOW BOV MaxEnt LSTM Trans.
Class by Adj. +LR

Compositional Entailment in Adjective Nouns. (Pavlick and Callison-Burch ACL 2016)



Does N entail AN?

Several DNN Models, with transter learning
(Bowman et al. 2015)

Accuracy

Human  Most Freq. MFC BOW BOV MaxEnt LSTM Trans.
Class by Adj. +LR

Compositional Entailment in Adjective Nouns. (Pavlick and Callison-Burch ACL 2016)
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summary

Humans are flexible with their language, they don't abide by
hard-and-fast logical rules of composition and entailment.

We can acquire lexical entailments at scale. ..

...but lexical entallments are not enough. We need
composition in order to model unseen phrases and full
sentences.

Inference involving composition is too complex to capture
using simple heuristics, and requires models to
incorporate context and common sense when pertforming
reasoning.
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SUB(consider, consider)

consider possible effects

considered environmental consequences

predicates
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Projection through Predicates

Input  Output

iIn France c in Europe Forward ><
In Europe 1 In France Reverse

in France | in Germany Alternation
In France # In the city Independent
(in France)

(in Europe)

Current Work-in-progress.




Projection through Predicates

'dentit Non-Exclusive, Non-Exclusive,
! [dentity Negation
>
\ \

Current Work-in-progress.



DEL (fail to)

falled to consider possible eftects

considered environmental consequences

“higher order”
predicates



Implicative Verbs

Implicative Verbs. (Karttunen Language 1971)



Implicative Verbs

She managed to fix the bug.

Implicative Verbs. (Karttunen Language 1971)



Implicative Verbs

She managed to fix the bug.

She wanted to fix the bug.

Implicative Verbs. (Karttunen Language 1971)



Implicative Verbs

She managed to fix the bug.
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She managed to fix the bug.

She wanted to fix the bug. x
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Implicative Verbs

She managed to fix the bug

She managed to fix the bug

Implicative Verbs. (Karttunen Language 1971)



Implicative Verbs

She wanted to fix the bug

She wanted to fix the bug

Implicative Verbs. (Karttunen Language 1971)
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iINntend to
venture to getto
lan to promise to
want to P
bother to
forget to
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dare to
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venture to
forget to
manage to
bother to
happen to
get to

decide to
dare to

fry to
agree 1o
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Implicative Verbs

venture to
forget to
manage to

bother to

happen to
Gallager chose to get 1o

accept a full scholarship  decide to
to play football for Temple dare 1o
University. try 1o
agree 1o
promise to

‘want to
iNntend to

plan to
hope to

Tense Manages to Predict Implicatives. (Pavlick and Callison-Burch EMNLP 2016)



Implicative Verbs

venture to
forget to
manage 10 wilkins was allowed to
h%%tggrr] tt% leave in 1987 to join
Gallager chose to get to French outfit Paris Saint-

accept a full scholarship Germain.

to play football for Temple dare to
University.

lense Manages to Predict Implicatives. (Pavlick and Callison-Burch EMNLP 2016)



Implicative Verbs

She managed to fix the bug.

She fixed the bug.

Contradiction
Entailment
Can’t Tell

lense Manages to Predict Implicatives. (Pavlick and Callison-Burch EMNLP 2016)
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Contradlctlon
Entailment
0.8f (Can’t Tell
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0.4}

0.2
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N Tense Agreement
Tense Manages to Predict Implicatives. (Pavlick and Callison-Burch EMNLP 2016)



Imphcatlve Verbs

Contradlctlon
Entailment

0.8 Can’t Tell

|

¢ High tense agreement
strongly predicts

whether the truth of

the compliment can

be inferred.

C

C..

0.0

<0.2 0.2-0.4 0.4—-0.6 >0.6

Tense Agreement
Tense Manages to Predict Implicatives. (Pavlick and Callison-Burch EMNLP 2016)
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DISCUSSION

* Humans are flexible with their language.
Computers need to be flexible too.

* What aspects of meaning do we expect our
semantic representations have built-in? What do we
expect to have to deal with in context, at runtime?

* What types of semantic tasks should we need to
optimize for explicitly”? Shouldnt some things come
“for free” when we train for harder tasks?
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