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Figure 1: Derivation with λ-DRSs, including β-conversion, for “A record date”. Com-
binatory rules are indicated by solid lines, semantic rules by dotted lines.

DRS composed by the α-operator. The merge conjoins two DRSs into a larger DRS
— semantically the merge is interpretated as (dynamic) logical conjunction. Merge-
reduction is the process of eliminating the merge operation by forming a new DRS
resulting from the union of the domains and conditions of the argument DRSso of
a merge, respectively (obeying certain constraints). Figure 1 illustrates the syntax-
semantics interface (and merge-reduction) for a derivation of a simple noun phrase.

Boxer adopts Van der Sandt’s view as presupposition as anaphora (Van der Sandt,
1992), in which presuppositional expressions are either resolved to previously estab-
lished discourse entities or accommodated on a suitable level of discourse. Van der
Sandt’s proposal is cast in DRT, and therefore relatively easy to integrate in Boxer’s
semantic formalism. The α-operator indicates information that has to be resolved in
the context, and is lexically introduced by anaphoric or presuppositional expressions.
A DRS constructed with α resembles the proto-DRS of Van der Sandt’s theory of pre-
supposition (Van der Sandt, 1992) although they are syntactically defined in a slightly
different way to overcome problems with free and bound variables, following Bos
(2003). Note that the difference between anaphora and presupposition collapses in
Van der Sandt’s theory.

The types are the ingredients of a typed lambda calculus that is employed to con-
struct DRSs in a bottom-up fashion, compositional way. The language of lambda-

Bos (2008)
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Fig. 6. System decomposition for the transformation-based BIUTEE system

7 System Mapping

In this section, we show the practical usability of our architecture. We illustrate
how three existing RTE systems can be mapped concretely onto our architecture:
BIUTEE, a transformation-based system; EDITS, an alignment-based system; and
TIE, a multi-stage classification system, which represent different approaches to
RTE. We also discuss mapping for formal reasoning-based systems.

7.1 BIUTEE

BIUTEE (Stern and Dagan, 2011) is a system for recognizing textual entailment
based on the transformation-based approach outlined in Section 2.2 developed
at Bar-Ilan University (BIU).12 The system derives the Hypothesis (H) from the
Text (T) with a sequence of rewrite steps. Since BIUTEE represents H and T as
dependency trees, these rewrite steps can either involve just lexical knowledge (node
rewrites) or lexico-syntactic knowledge (subtree rewrites). Additional operations
(e.g., the insertion of syntactic structure or modification of POS types) ensure the
existence for a derivation for any T-H pair. The likelihood that a derivation preserves
entailment is finally calculated by a confidence model.

Figure 6 shows the decomposition of BIUTEE in terms of the EXCITEMENT
architecture. The LAP provides all required annotations, including parse trees. The
EDA encapsulates the “top level” of the algorithm. It consists of three parts: a
generation part where rewrite steps are performed, i.e., entailed trees are generated;
a search part which selects good candidates among the generated derivations; and a
classifier. The generation part relies on entailment rules which are stored modularly
in (lexico-)syntactic knowledge components and lexical knowledge components. The

12 BIUTEE 2.4.1 is downloadable from http://www.cs.biu.ac.il/~nlp/downloads/
biutee/

Padó et al. (2015)
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Figure 1: Recognizing textual entailment using (A) conditional encoding via two LSTMs, one over
the premise and one over the hypothesis conditioned on the representation of the premise (c5), (B)
attention only based on the last output vector (h9) or (C) word-by-word attention based on all output
vectors of the hypothesis (h7, h8 and h9).

state is initialized with the last cell state of the previous LSTM (c5 in the example), i.e. it is condi-
tioned on the representation that the first LSTM built for the premise (A). We use word2vec vectors
(Mikolov et al., 2013) as word representations, which we do not optimize during training. Out-of-
vocabulary words in the training set are randomly initialized by sampling values uniformly from
(�0.05, 0.05) and optimized during training.1 Out-of-vocabulary words encountered at inference
time on the validation and test corpus are set to fixed random vectors. By not tuning representations
of words for which we have word2vec vectors, we ensure that at inference time their representation
stays close to unseen similar words for which we have word2vec embeddings. We use a linear layer
to project word vectors to the dimensionality of the hidden size of the LSTM, yielding input vectors
x
i

. Finally, for classification we use a softmax layer over the output of a non-linear projection of
the last output vector (h9 in the example) into the target space of the three classes (ENTAILMENT,
NEUTRAL or CONTRADICTION), and train using the cross-entropy loss.

2.3 ATTENTION

Attentive neural networks have recently demonstrated success in a wide range of tasks ranging from
handwriting synthesis (Graves, 2013), digit classification (Mnih et al., 2014), machine translation
(Bahdanau et al., 2015), image captioning (Xu et al., 2015), speech recognition (Chorowski et al.,
2015) and sentence summarization (Rush et al., 2015), to geometric reasoning (Vinyals et al., 2015).
The idea is to allow the model to attend over past output vectors (see Figure 1 B), thereby mitigating
the LSTM’s cell state bottleneck. More precisely, an LSTM with attention for RTE does not need to
capture the whole semantics of the premise in its cell state. Instead, it is sufficient to output vectors
while reading the premise and accumulating a representation in the cell state that informs the second
LSTM which of the output vectors of the premise it needs to attend over to determine the RTE class.

Let Y 2 Rk⇥L be a matrix consisting of output vectors [h1 · · · h
L

] that the first LSTM produced
when reading the L words of the premise, where k is a hyperparameter denoting the size of em-
beddings and hidden layers. Furthermore, let e

L

2 RL be a vector of 1s and h
N

be the last output
vector after the premise and hypothesis were processed by the two LSTMs respectively. The atten-
tion mechanism will produce a vector ↵ of attention weights and a weighted representation r of the
premise via

M = tanh(WyY +Whh
N

⌦ e
L

) M 2 Rk⇥L (7)

↵ = softmax(wTM) ↵ 2 RL (8)

r = Y↵T r 2 Rk (9)

1We found 12.1k words in SNLI for which we could not obtain word2vec embeddings, resulting in 3.65M
tunable parameters.
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Summarization

They argued that the council didn’t consider 
environmental effects.

Last December they had argued that the council 
had failed to consider possible environmental 

effects of contaminated land at the site.
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Dialogue

Remove from calendar?

I decided I don’t want to go to that party on Saturday.
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Figure 5.2: The 16 elementary set relations, represented by Johnston diagrams. Each
box represents the universe U , and the two circles within the box represent the sets
x and y. A region is white if it is empty, and shaded if it is non-empty. Thus in the
diagram labeled R1101, only the region x� y is empty, indicating that � � x � y � U .

equivalence class in which only partition 10 is empty.) These equivalence classes are
depicted graphically in figure 5.2.

In fact, each of these equivalence classes is a set relation, that is, a set of ordered
pairs of sets. We will refer to these 16 set relations as the elementary set relations,
and we will denote this set of 16 relations by R. By construction, the relations in R

are both mutually exhaustive (every ordered pair of sets belongs to some relation in
R) and mutually exclusive (no ordered pair of sets belongs to two different relations
in R). Thus, every ordered pair of sets can be assigned to exactly one relation in R.
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Figure 2: Mappings of set-theorhetic entailment relations
onto the WordNet hierarchy. In the Venn diagrams, re-
produced from (MacCartney, 2009), the left circle repre-
sents states in which x is true and the right circle states in
which y is true. The shaded area represents all possible
true states. E.g. when x ⌘ y (equivalence), in every true
state, either both x and y are true, or neither is.

3 Entailment Relations

We use the relations from Bill MacCartney’s the-
sis on natural language inference as the basis for
our categorization of relations (MacCartney, 2009).
MacCartney’s work focused on integrating the se-
mantic properties previously employed by systems
for question answering (Harabagiu and Hickl, 2006)
and RTE (Bar-Haim et al., 2007) within the formal
theory of natural logic (Lakoff, 1972). As a result,
he provides a simple framework which models lexi-
cal entailment in 7 “basic entailment relationships”:

Equivalence (⌘): if X is true then Y is true, and
if Y is true then X is true.

Forward entailment (@): if X is true then Y is
true, but if Y is true then X may or may not be true.

Reverse entailment (A): if Y is true then X is
true, but if X is true then Y may or may not be true.

Negation (^): if X is true then Y is false, and if
Y is false then X is true; either X or Y must be true.

Alternation (|): if X is true then Y is false, but if
Y is false then X may or may not be true.

Cover (^): if X is true then Y may or may not be
true, and if Y is true then X may or may not be true;

either X or Y must be true. We omit this relation,
since its applicability to RTE is not clear.

Independence (#): if X is true then Y may or
may not be true, and if Y is true then X may or may
not be true.

4 Extracting entailment relations from
WordNet

4.1 Mapping onto Natural Logic relations

We would like to train a model to automatically dis-
tinguish between the relationships described above.
In order to gather labelled training data, we first look
to the information available in the existing Word-
Net hierarchy. For roughly 2.5 million (60%) of the
noun pairs in PPDB, both nouns appear in WordNet
(although not necessarily in the same synset). We
use the rules in Table 2 (shown graphically in Fig-
ure 2) to map a pair of nodes in the WordNet noun
hierarchy onto one of the basic entailment relations
described in section 3.

Other Relatedness In addition to MacCartney’s
relations, we define a sixth catch-all category for
terms which are flagged as related by WordNet but
whose relation is not built into the hierarchical struc-
ture. These noun pairs do not meet the criteria of the
basic entailment relations but carry more informa-
tion than do truly independent terms. We combine
holonymy (part/whole relationships), attributes (ad-
jectives closely tied to a specific noun), and deriva-
tionally related terms as “other” relations.

4.2 Shortcomings of WordNet labeling

Our definitions give the desired results for the ⌘,
A, @, and “other” categories. Table 1 shows some
examples of nouns in PPDB which were assigned
to each of these labels. However, whereas Mac-
Cartney’s alternation is strictly contradictory (X !
¬Y ), co-hyponyms of a common parent in WordNet
do not necessarily have this property. Some exam-
ples behave well (e.g. lunch and dinner share the
parent meal), but others are better labelled as @ or #
(e.g. boy and guy share the parent man and brother
and worker share the parent person). As a result,
the WordNet alternation provides no information in
terms of entailment, behaving instead like MacCart-
ney’s independence (i.e. “if X is true then Y may or
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depicted graphically in figure 5.2.

In fact, each of these equivalence classes is a set relation, that is, a set of ordered
pairs of sets. We will refer to these 16 set relations as the elementary set relations,
and we will denote this set of 16 relations by R. By construction, the relations in R

are both mutually exhaustive (every ordered pair of sets belongs to some relation in
R) and mutually exclusive (no ordered pair of sets belongs to two different relations
in R). Thus, every ordered pair of sets can be assigned to exactly one relation in R.
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Figure 2: Mappings of set-theorhetic entailment relations
onto the WordNet hierarchy. In the Venn diagrams, re-
produced from (MacCartney, 2009), the left circle repre-
sents states in which x is true and the right circle states in
which y is true. The shaded area represents all possible
true states. E.g. when x ⌘ y (equivalence), in every true
state, either both x and y are true, or neither is.

3 Entailment Relations

We use the relations from Bill MacCartney’s the-
sis on natural language inference as the basis for
our categorization of relations (MacCartney, 2009).
MacCartney’s work focused on integrating the se-
mantic properties previously employed by systems
for question answering (Harabagiu and Hickl, 2006)
and RTE (Bar-Haim et al., 2007) within the formal
theory of natural logic (Lakoff, 1972). As a result,
he provides a simple framework which models lexi-
cal entailment in 7 “basic entailment relationships”:

Equivalence (⌘): if X is true then Y is true, and
if Y is true then X is true.

Forward entailment (@): if X is true then Y is
true, but if Y is true then X may or may not be true.

Reverse entailment (A): if Y is true then X is
true, but if X is true then Y may or may not be true.

Negation (^): if X is true then Y is false, and if
Y is false then X is true; either X or Y must be true.

Alternation (|): if X is true then Y is false, but if
Y is false then X may or may not be true.

Cover (^): if X is true then Y may or may not be
true, and if Y is true then X may or may not be true;

either X or Y must be true. We omit this relation,
since its applicability to RTE is not clear.

Independence (#): if X is true then Y may or
may not be true, and if Y is true then X may or may
not be true.

4 Extracting entailment relations from
WordNet

4.1 Mapping onto Natural Logic relations

We would like to train a model to automatically dis-
tinguish between the relationships described above.
In order to gather labelled training data, we first look
to the information available in the existing Word-
Net hierarchy. For roughly 2.5 million (60%) of the
noun pairs in PPDB, both nouns appear in WordNet
(although not necessarily in the same synset). We
use the rules in Table 2 (shown graphically in Fig-
ure 2) to map a pair of nodes in the WordNet noun
hierarchy onto one of the basic entailment relations
described in section 3.

Other Relatedness In addition to MacCartney’s
relations, we define a sixth catch-all category for
terms which are flagged as related by WordNet but
whose relation is not built into the hierarchical struc-
ture. These noun pairs do not meet the criteria of the
basic entailment relations but carry more informa-
tion than do truly independent terms. We combine
holonymy (part/whole relationships), attributes (ad-
jectives closely tied to a specific noun), and deriva-
tionally related terms as “other” relations.

4.2 Shortcomings of WordNet labeling

Our definitions give the desired results for the ⌘,
A, @, and “other” categories. Table 1 shows some
examples of nouns in PPDB which were assigned
to each of these labels. However, whereas Mac-
Cartney’s alternation is strictly contradictory (X !
¬Y ), co-hyponyms of a common parent in WordNet
do not necessarily have this property. Some exam-
ples behave well (e.g. lunch and dinner share the
parent meal), but others are better labelled as @ or #
(e.g. boy and guy share the parent man and brother
and worker share the parent person). As a result,
the WordNet alternation provides no information in
terms of entailment, behaving instead like MacCart-
ney’s independence (i.e. “if X is true then Y may or
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equivalence class in which only partition 10 is empty.) These equivalence classes are
depicted graphically in figure 5.2.

In fact, each of these equivalence classes is a set relation, that is, a set of ordered
pairs of sets. We will refer to these 16 set relations as the elementary set relations,
and we will denote this set of 16 relations by R. By construction, the relations in R

are both mutually exhaustive (every ordered pair of sets belongs to some relation in
R) and mutually exclusive (no ordered pair of sets belongs to two different relations
in R). Thus, every ordered pair of sets can be assigned to exactly one relation in R.
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R) and mutually exclusive (no ordered pair of sets belongs to two different relations
in R). Thus, every ordered pair of sets can be assigned to exactly one relation in R.
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Figure 2: Mappings of set-theorhetic entailment relations
onto the WordNet hierarchy. In the Venn diagrams, re-
produced from (MacCartney, 2009), the left circle repre-
sents states in which x is true and the right circle states in
which y is true. The shaded area represents all possible
true states. E.g. when x ⌘ y (equivalence), in every true
state, either both x and y are true, or neither is.

3 Entailment Relations

We use the relations from Bill MacCartney’s the-
sis on natural language inference as the basis for
our categorization of relations (MacCartney, 2009).
MacCartney’s work focused on integrating the se-
mantic properties previously employed by systems
for question answering (Harabagiu and Hickl, 2006)
and RTE (Bar-Haim et al., 2007) within the formal
theory of natural logic (Lakoff, 1972). As a result,
he provides a simple framework which models lexi-
cal entailment in 7 “basic entailment relationships”:

Equivalence (⌘): if X is true then Y is true, and
if Y is true then X is true.

Forward entailment (@): if X is true then Y is
true, but if Y is true then X may or may not be true.

Reverse entailment (A): if Y is true then X is
true, but if X is true then Y may or may not be true.

Negation (^): if X is true then Y is false, and if
Y is false then X is true; either X or Y must be true.

Alternation (|): if X is true then Y is false, but if
Y is false then X may or may not be true.

Cover (^): if X is true then Y may or may not be
true, and if Y is true then X may or may not be true;

either X or Y must be true. We omit this relation,
since its applicability to RTE is not clear.

Independence (#): if X is true then Y may or
may not be true, and if Y is true then X may or may
not be true.

4 Extracting entailment relations from
WordNet

4.1 Mapping onto Natural Logic relations

We would like to train a model to automatically dis-
tinguish between the relationships described above.
In order to gather labelled training data, we first look
to the information available in the existing Word-
Net hierarchy. For roughly 2.5 million (60%) of the
noun pairs in PPDB, both nouns appear in WordNet
(although not necessarily in the same synset). We
use the rules in Table 2 (shown graphically in Fig-
ure 2) to map a pair of nodes in the WordNet noun
hierarchy onto one of the basic entailment relations
described in section 3.

Other Relatedness In addition to MacCartney’s
relations, we define a sixth catch-all category for
terms which are flagged as related by WordNet but
whose relation is not built into the hierarchical struc-
ture. These noun pairs do not meet the criteria of the
basic entailment relations but carry more informa-
tion than do truly independent terms. We combine
holonymy (part/whole relationships), attributes (ad-
jectives closely tied to a specific noun), and deriva-
tionally related terms as “other” relations.

4.2 Shortcomings of WordNet labeling

Our definitions give the desired results for the ⌘,
A, @, and “other” categories. Table 1 shows some
examples of nouns in PPDB which were assigned
to each of these labels. However, whereas Mac-
Cartney’s alternation is strictly contradictory (X !
¬Y ), co-hyponyms of a common parent in WordNet
do not necessarily have this property. Some exam-
ples behave well (e.g. lunch and dinner share the
parent meal), but others are better labelled as @ or #
(e.g. boy and guy share the parent man and brother
and worker share the parent person). As a result,
the WordNet alternation provides no information in
terms of entailment, behaving instead like MacCart-
ney’s independence (i.e. “if X is true then Y may or
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and we will denote this set of 16 relations by R. By construction, the relations in R
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R) and mutually exclusive (no ordered pair of sets belongs to two different relations
in R). Thus, every ordered pair of sets can be assigned to exactly one relation in R.
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Figure 2: Mappings of set-theorhetic entailment relations
onto the WordNet hierarchy. In the Venn diagrams, re-
produced from (MacCartney, 2009), the left circle repre-
sents states in which x is true and the right circle states in
which y is true. The shaded area represents all possible
true states. E.g. when x ⌘ y (equivalence), in every true
state, either both x and y are true, or neither is.

3 Entailment Relations

We use the relations from Bill MacCartney’s the-
sis on natural language inference as the basis for
our categorization of relations (MacCartney, 2009).
MacCartney’s work focused on integrating the se-
mantic properties previously employed by systems
for question answering (Harabagiu and Hickl, 2006)
and RTE (Bar-Haim et al., 2007) within the formal
theory of natural logic (Lakoff, 1972). As a result,
he provides a simple framework which models lexi-
cal entailment in 7 “basic entailment relationships”:

Equivalence (⌘): if X is true then Y is true, and
if Y is true then X is true.

Forward entailment (@): if X is true then Y is
true, but if Y is true then X may or may not be true.

Reverse entailment (A): if Y is true then X is
true, but if X is true then Y may or may not be true.

Negation (^): if X is true then Y is false, and if
Y is false then X is true; either X or Y must be true.

Alternation (|): if X is true then Y is false, but if
Y is false then X may or may not be true.

Cover (^): if X is true then Y may or may not be
true, and if Y is true then X may or may not be true;

either X or Y must be true. We omit this relation,
since its applicability to RTE is not clear.

Independence (#): if X is true then Y may or
may not be true, and if Y is true then X may or may
not be true.

4 Extracting entailment relations from
WordNet

4.1 Mapping onto Natural Logic relations

We would like to train a model to automatically dis-
tinguish between the relationships described above.
In order to gather labelled training data, we first look
to the information available in the existing Word-
Net hierarchy. For roughly 2.5 million (60%) of the
noun pairs in PPDB, both nouns appear in WordNet
(although not necessarily in the same synset). We
use the rules in Table 2 (shown graphically in Fig-
ure 2) to map a pair of nodes in the WordNet noun
hierarchy onto one of the basic entailment relations
described in section 3.

Other Relatedness In addition to MacCartney’s
relations, we define a sixth catch-all category for
terms which are flagged as related by WordNet but
whose relation is not built into the hierarchical struc-
ture. These noun pairs do not meet the criteria of the
basic entailment relations but carry more informa-
tion than do truly independent terms. We combine
holonymy (part/whole relationships), attributes (ad-
jectives closely tied to a specific noun), and deriva-
tionally related terms as “other” relations.

4.2 Shortcomings of WordNet labeling

Our definitions give the desired results for the ⌘,
A, @, and “other” categories. Table 1 shows some
examples of nouns in PPDB which were assigned
to each of these labels. However, whereas Mac-
Cartney’s alternation is strictly contradictory (X !
¬Y ), co-hyponyms of a common parent in WordNet
do not necessarily have this property. Some exam-
ples behave well (e.g. lunch and dinner share the
parent meal), but others are better labelled as @ or #
(e.g. boy and guy share the parent man and brother
and worker share the parent person). As a result,
the WordNet alternation provides no information in
terms of entailment, behaving instead like MacCart-
ney’s independence (i.e. “if X is true then Y may or
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equivalence class in which only partition 10 is empty.) These equivalence classes are
depicted graphically in figure 5.2.

In fact, each of these equivalence classes is a set relation, that is, a set of ordered
pairs of sets. We will refer to these 16 set relations as the elementary set relations,
and we will denote this set of 16 relations by R. By construction, the relations in R

are both mutually exhaustive (every ordered pair of sets belongs to some relation in
R) and mutually exclusive (no ordered pair of sets belongs to two different relations
in R). Thus, every ordered pair of sets can be assigned to exactly one relation in R.
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Figure 2: Mappings of set-theorhetic entailment relations
onto the WordNet hierarchy. In the Venn diagrams, re-
produced from (MacCartney, 2009), the left circle repre-
sents states in which x is true and the right circle states in
which y is true. The shaded area represents all possible
true states. E.g. when x ⌘ y (equivalence), in every true
state, either both x and y are true, or neither is.

3 Entailment Relations

We use the relations from Bill MacCartney’s the-
sis on natural language inference as the basis for
our categorization of relations (MacCartney, 2009).
MacCartney’s work focused on integrating the se-
mantic properties previously employed by systems
for question answering (Harabagiu and Hickl, 2006)
and RTE (Bar-Haim et al., 2007) within the formal
theory of natural logic (Lakoff, 1972). As a result,
he provides a simple framework which models lexi-
cal entailment in 7 “basic entailment relationships”:

Equivalence (⌘): if X is true then Y is true, and
if Y is true then X is true.

Forward entailment (@): if X is true then Y is
true, but if Y is true then X may or may not be true.

Reverse entailment (A): if Y is true then X is
true, but if X is true then Y may or may not be true.

Negation (^): if X is true then Y is false, and if
Y is false then X is true; either X or Y must be true.

Alternation (|): if X is true then Y is false, but if
Y is false then X may or may not be true.

Cover (^): if X is true then Y may or may not be
true, and if Y is true then X may or may not be true;

either X or Y must be true. We omit this relation,
since its applicability to RTE is not clear.

Independence (#): if X is true then Y may or
may not be true, and if Y is true then X may or may
not be true.

4 Extracting entailment relations from
WordNet

4.1 Mapping onto Natural Logic relations

We would like to train a model to automatically dis-
tinguish between the relationships described above.
In order to gather labelled training data, we first look
to the information available in the existing Word-
Net hierarchy. For roughly 2.5 million (60%) of the
noun pairs in PPDB, both nouns appear in WordNet
(although not necessarily in the same synset). We
use the rules in Table 2 (shown graphically in Fig-
ure 2) to map a pair of nodes in the WordNet noun
hierarchy onto one of the basic entailment relations
described in section 3.

Other Relatedness In addition to MacCartney’s
relations, we define a sixth catch-all category for
terms which are flagged as related by WordNet but
whose relation is not built into the hierarchical struc-
ture. These noun pairs do not meet the criteria of the
basic entailment relations but carry more informa-
tion than do truly independent terms. We combine
holonymy (part/whole relationships), attributes (ad-
jectives closely tied to a specific noun), and deriva-
tionally related terms as “other” relations.

4.2 Shortcomings of WordNet labeling

Our definitions give the desired results for the ⌘,
A, @, and “other” categories. Table 1 shows some
examples of nouns in PPDB which were assigned
to each of these labels. However, whereas Mac-
Cartney’s alternation is strictly contradictory (X !
¬Y ), co-hyponyms of a common parent in WordNet
do not necessarily have this property. Some exam-
ples behave well (e.g. lunch and dinner share the
parent meal), but others are better labelled as @ or #
(e.g. boy and guy share the parent man and brother
and worker share the parent person). As a result,
the WordNet alternation provides no information in
terms of entailment, behaving instead like MacCart-
ney’s independence (i.e. “if X is true then Y may or
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Monolingual Features
symmetric and asymmetric similarities based on 

dependency context

cosine:0.431 lin:0.544  
balprec:0.396 weeds:0.289…

1 1 1 1 1 0 0 1 0 0 1 0
1 0 1 0 1 1 1 1 1 1 1 1kid 

little girl 
nsubj-draw 

lost-dep

nsubj-vomit

poss-shoe

dep-brother

nsubjpass-buckled

nsubj-yell

rcmod-tire
d

… 

Discovery of Inference Rules from Text. (Lin and Pantel SIGKDD 2001)



Monolingual Features

…if this can happen to my little girl , it can happen to other kids…

advcl

nmodnmod

[X]<-nmod-[happen]-advcl->[happen]-nmod->[Y]:1 
[X]<-conj-[Y]:1 
[X]<-pobj-[as]<-prep-[know]<-rcmod-[Y]:1

lexico-syntactic patterns

Automatic acquisition of hyponyms from large text corpora. (Hearst COLING 1992) 
Semantic taxonomy induction from heterogenous evidence. (Snow et al. ACL 2006)



Bilingual Features

ahogados a la playa ...

get washed up on beaches ...

... fünf Landwirte , weil

... 5 farmers were in Ireland ...

...

oder wurden , gefoltert

or have been , tortured

festgenommen 

thrown into jail

festgenommen

imprisoned

...

... ...

...

Paraphrasing with bilingual parallel corpora. (Bannard and Callison-Burch ACL 2005) 
PPDB: The paraphrase database. (Ganitkevitch et al. NAACL 2013)



Table 1

mono Predicted label  
(using monolingual features)

Predicted label  
(using bilingual features)

Predicted label  
(using all features)

ind syn hyp exl oth ≣ ⊐ ¬ # ~ ≣ ⊐ ¬ # ~ ≣ ⊐ ¬ # ~
syn 1 3 1 0 0 4 ≣ 58% 20% 4% 15% 3% 62% 21% 5% 4% 8% 83% 10% 0% 2% 4%

hyp 2 3 7 0 1 13 ⊐ 20% 51% 3% 18% 7% 27% 5% 7% 7% 54% 6% 76% 2% 7% 8%
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Figure 4: Confusion matrices for classifier trained using only monolingual features (distributional and path) versus bilingual
features (paraphrase and translation). True labels are shown along rows, predicted along columns. The matrix is normalized
along rows, so that the predictions for each (true) class sum to 100%.

� F1 when excluding
All Lex. Dist. Path Para. Tran. WN

# 79 -2.0 -0.2 -1.2 -1.7 -0.2 -0.1
⌘ 57 -3.5 +0.2 -0.7 -2.4 -3.7 +0.5
A 68 -4.6 -0.3 -0.8 -0.8 -0.7 -1.6
¬ 49 -4.0 -0.8 -2.9 +0.3 -0.0 -2.2
⇠ 51 -4.9 -0.5 -0.7 -1.2 -0.9 -0.3

Table 5: F1 measure (⇥100) achieved by entailment classifier
using 10-fold cross validation on the training data.

Table 3 shines some light onto the differences
between monolingual and bilingual similarities.
While the monolingual asymmetric metrics are
good for identifying A pairs, the symmetric met-
rics consistently identify ¬ pairs; none of the
monolingual scores we explored were effective
in making the subtle distinction between ⌘ pairs
and the other types of paraphrase. In contrast,
the bilingual similarity metric is fairly precise
for identifying ⌘ pairs, but provides less infor-
mation for distinguishing between types of non-
equivalent paraphrase. These differences are fur-
ther exhibited in the confusion matrices shown in
Figure 4; when the classifier is trained using only
monolingual features, it misclassifies 26% of ¬
pairs as ⌘, whereas the bilingual features make
this error only 6% of the time. On the other hand,
the bilingual features completely fail to predict the
A class, calling over 80% of such pairs ⌘ or ⇠.

7 Evaluation

7.1 Intrinsic Evaluation

We test the performance of our classifier intrinsi-
cally, through its ability to reproduce the human
labels for the phrase pairs from the SICK test sen-
tences. Table 7 shows the precision and recall
achieved by the classifier for each of our 5 en-
tailment classes. The classifier is able to achieve

an overall 79% accuracy, reaching >70% preci-
sion while maintaining good levels of recall on all
classes.

True Pred. N Example misclassifications
⇠ # 169 boy/little, an empy/the air
# ⇠ 114 little/toy, color/hair
A ⇠ 108 drink/juice, ocean/surf
A # 97 in front of/the face of, vehicle/horse
A ⌘ 83 cat/kitten, pavement/sidewalk
⌘ A 46 big/grand, a girl/a young lady
A ¬ 29 kid/teenager, no small/a large
¬ A 29 old man/young man, a car/a window
# ⌘ 15 a person/one, a crowd/a large
⌘ # 9 he is/man is, photo/still
⌘ ¬ 1 girl is/she is

Table 6: Example misclassifications from some of the most
frequent and most interesting error categories.

Figure 4 shows the classifier’s confusion ma-
trix and Table 6 shows some examples of common
and interesting error cases. The majority of errors
(26%) come from confusing the ⇠ class with the
# class. This mistake is not too concerning from
an RTE perspective since ⇠ can be treated as a
special case of # (Section 5). There are very few
cases in which the classifier makes extreme errors,
e.g. confusing ⌘ with ¬ or with #; some interest-
ing examples of such errors arise when the phrases
contain pronouns (e.g. girl ⌘ she) or when the
relation uses a highly infrequent word sense (e.g.
photo ⌘ still).

7.2 The Nutcracker RTE System

To further test our classifier, we evaluate the use-
fulness of the automatic entailment predictions in
a downstream RTE task. We run our experiments
using Nutcracker, a state-of-the-art RTE system
based on formal semantics (Bjerva et al., 2014).
In the SemEval 2014 RTE challenge, this system
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Figure 4: Confusion matrices for classifier trained using only monolingual features (distributional and path) versus bilingual
features (paraphrase and translation). True labels are shown along rows, predicted along columns. The matrix is normalized
along rows, so that the predictions for each (true) class sum to 100%.

� F1 when excluding
All Lex. Dist. Path Para. Tran. WN

# 79 -2.0 -0.2 -1.2 -1.7 -0.2 -0.1
⌘ 57 -3.5 +0.2 -0.7 -2.4 -3.7 +0.5
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⇠ 51 -4.9 -0.5 -0.7 -1.2 -0.9 -0.3

Table 5: F1 measure (⇥100) achieved by entailment classifier
using 10-fold cross validation on the training data.

Table 3 shines some light onto the differences
between monolingual and bilingual similarities.
While the monolingual asymmetric metrics are
good for identifying A pairs, the symmetric met-
rics consistently identify ¬ pairs; none of the
monolingual scores we explored were effective
in making the subtle distinction between ⌘ pairs
and the other types of paraphrase. In contrast,
the bilingual similarity metric is fairly precise
for identifying ⌘ pairs, but provides less infor-
mation for distinguishing between types of non-
equivalent paraphrase. These differences are fur-
ther exhibited in the confusion matrices shown in
Figure 4; when the classifier is trained using only
monolingual features, it misclassifies 26% of ¬
pairs as ⌘, whereas the bilingual features make
this error only 6% of the time. On the other hand,
the bilingual features completely fail to predict the
A class, calling over 80% of such pairs ⌘ or ⇠.

7 Evaluation

7.1 Intrinsic Evaluation

We test the performance of our classifier intrinsi-
cally, through its ability to reproduce the human
labels for the phrase pairs from the SICK test sen-
tences. Table 7 shows the precision and recall
achieved by the classifier for each of our 5 en-
tailment classes. The classifier is able to achieve

an overall 79% accuracy, reaching >70% preci-
sion while maintaining good levels of recall on all
classes.

True Pred. N Example misclassifications
⇠ # 169 boy/little, an empy/the air
# ⇠ 114 little/toy, color/hair
A ⇠ 108 drink/juice, ocean/surf
A # 97 in front of/the face of, vehicle/horse
A ⌘ 83 cat/kitten, pavement/sidewalk
⌘ A 46 big/grand, a girl/a young lady
A ¬ 29 kid/teenager, no small/a large
¬ A 29 old man/young man, a car/a window
# ⌘ 15 a person/one, a crowd/a large
⌘ # 9 he is/man is, photo/still
⌘ ¬ 1 girl is/she is

Table 6: Example misclassifications from some of the most
frequent and most interesting error categories.

Figure 4 shows the classifier’s confusion ma-
trix and Table 6 shows some examples of common
and interesting error cases. The majority of errors
(26%) come from confusing the ⇠ class with the
# class. This mistake is not too concerning from
an RTE perspective since ⇠ can be treated as a
special case of # (Section 5). There are very few
cases in which the classifier makes extreme errors,
e.g. confusing ⌘ with ¬ or with #; some interest-
ing examples of such errors arise when the phrases
contain pronouns (e.g. girl ⌘ she) or when the
relation uses a highly infrequent word sense (e.g.
photo ⌘ still).

7.2 The Nutcracker RTE System

To further test our classifier, we evaluate the use-
fulness of the automatic entailment predictions in
a downstream RTE task. We run our experiments
using Nutcracker, a state-of-the-art RTE system
based on formal semantics (Bjerva et al., 2014).
In the SemEval 2014 RTE challenge, this system
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Figure 4: Confusion matrices for classifier trained using only monolingual features (distributional and path) versus bilingual
features (paraphrase and translation). True labels are shown along rows, predicted along columns. The matrix is normalized
along rows, so that the predictions for each (true) class sum to 100%.

� F1 when excluding
All Lex. Dist. Path Para. Tran. WN

# 79 -2.0 -0.2 -1.2 -1.7 -0.2 -0.1
⌘ 57 -3.5 +0.2 -0.7 -2.4 -3.7 +0.5
A 68 -4.6 -0.3 -0.8 -0.8 -0.7 -1.6
¬ 49 -4.0 -0.8 -2.9 +0.3 -0.0 -2.2
⇠ 51 -4.9 -0.5 -0.7 -1.2 -0.9 -0.3

Table 5: F1 measure (⇥100) achieved by entailment classifier
using 10-fold cross validation on the training data.

Table 3 shines some light onto the differences
between monolingual and bilingual similarities.
While the monolingual asymmetric metrics are
good for identifying A pairs, the symmetric met-
rics consistently identify ¬ pairs; none of the
monolingual scores we explored were effective
in making the subtle distinction between ⌘ pairs
and the other types of paraphrase. In contrast,
the bilingual similarity metric is fairly precise
for identifying ⌘ pairs, but provides less infor-
mation for distinguishing between types of non-
equivalent paraphrase. These differences are fur-
ther exhibited in the confusion matrices shown in
Figure 4; when the classifier is trained using only
monolingual features, it misclassifies 26% of ¬
pairs as ⌘, whereas the bilingual features make
this error only 6% of the time. On the other hand,
the bilingual features completely fail to predict the
A class, calling over 80% of such pairs ⌘ or ⇠.

7 Evaluation

7.1 Intrinsic Evaluation

We test the performance of our classifier intrinsi-
cally, through its ability to reproduce the human
labels for the phrase pairs from the SICK test sen-
tences. Table 7 shows the precision and recall
achieved by the classifier for each of our 5 en-
tailment classes. The classifier is able to achieve

an overall 79% accuracy, reaching >70% preci-
sion while maintaining good levels of recall on all
classes.

True Pred. N Example misclassifications
⇠ # 169 boy/little, an empy/the air
# ⇠ 114 little/toy, color/hair
A ⇠ 108 drink/juice, ocean/surf
A # 97 in front of/the face of, vehicle/horse
A ⌘ 83 cat/kitten, pavement/sidewalk
⌘ A 46 big/grand, a girl/a young lady
A ¬ 29 kid/teenager, no small/a large
¬ A 29 old man/young man, a car/a window
# ⌘ 15 a person/one, a crowd/a large
⌘ # 9 he is/man is, photo/still
⌘ ¬ 1 girl is/she is

Table 6: Example misclassifications from some of the most
frequent and most interesting error categories.

Figure 4 shows the classifier’s confusion ma-
trix and Table 6 shows some examples of common
and interesting error cases. The majority of errors
(26%) come from confusing the ⇠ class with the
# class. This mistake is not too concerning from
an RTE perspective since ⇠ can be treated as a
special case of # (Section 5). There are very few
cases in which the classifier makes extreme errors,
e.g. confusing ⌘ with ¬ or with #; some interest-
ing examples of such errors arise when the phrases
contain pronouns (e.g. girl ⌘ she) or when the
relation uses a highly infrequent word sense (e.g.
photo ⌘ still).

7.2 The Nutcracker RTE System

To further test our classifier, we evaluate the use-
fulness of the automatic entailment predictions in
a downstream RTE task. We run our experiments
using Nutcracker, a state-of-the-art RTE system
based on formal semantics (Bjerva et al., 2014).
In the SemEval 2014 RTE challenge, this system
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Figure 4: Confusion matrices for classifier trained using only monolingual features (distributional and path) versus bilingual
features (paraphrase and translation). True labels are shown along rows, predicted along columns. The matrix is normalized
along rows, so that the predictions for each (true) class sum to 100%.

� F1 when excluding
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# 79 -2.0 -0.2 -1.2 -1.7 -0.2 -0.1
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A 68 -4.6 -0.3 -0.8 -0.8 -0.7 -1.6
¬ 49 -4.0 -0.8 -2.9 +0.3 -0.0 -2.2
⇠ 51 -4.9 -0.5 -0.7 -1.2 -0.9 -0.3

Table 5: F1 measure (⇥100) achieved by entailment classifier
using 10-fold cross validation on the training data.

Table 3 shines some light onto the differences
between monolingual and bilingual similarities.
While the monolingual asymmetric metrics are
good for identifying A pairs, the symmetric met-
rics consistently identify ¬ pairs; none of the
monolingual scores we explored were effective
in making the subtle distinction between ⌘ pairs
and the other types of paraphrase. In contrast,
the bilingual similarity metric is fairly precise
for identifying ⌘ pairs, but provides less infor-
mation for distinguishing between types of non-
equivalent paraphrase. These differences are fur-
ther exhibited in the confusion matrices shown in
Figure 4; when the classifier is trained using only
monolingual features, it misclassifies 26% of ¬
pairs as ⌘, whereas the bilingual features make
this error only 6% of the time. On the other hand,
the bilingual features completely fail to predict the
A class, calling over 80% of such pairs ⌘ or ⇠.

7 Evaluation

7.1 Intrinsic Evaluation

We test the performance of our classifier intrinsi-
cally, through its ability to reproduce the human
labels for the phrase pairs from the SICK test sen-
tences. Table 7 shows the precision and recall
achieved by the classifier for each of our 5 en-
tailment classes. The classifier is able to achieve

an overall 79% accuracy, reaching >70% preci-
sion while maintaining good levels of recall on all
classes.

True Pred. N Example misclassifications
⇠ # 169 boy/little, an empy/the air
# ⇠ 114 little/toy, color/hair
A ⇠ 108 drink/juice, ocean/surf
A # 97 in front of/the face of, vehicle/horse
A ⌘ 83 cat/kitten, pavement/sidewalk
⌘ A 46 big/grand, a girl/a young lady
A ¬ 29 kid/teenager, no small/a large
¬ A 29 old man/young man, a car/a window
# ⌘ 15 a person/one, a crowd/a large
⌘ # 9 he is/man is, photo/still
⌘ ¬ 1 girl is/she is

Table 6: Example misclassifications from some of the most
frequent and most interesting error categories.

Figure 4 shows the classifier’s confusion ma-
trix and Table 6 shows some examples of common
and interesting error cases. The majority of errors
(26%) come from confusing the ⇠ class with the
# class. This mistake is not too concerning from
an RTE perspective since ⇠ can be treated as a
special case of # (Section 5). There are very few
cases in which the classifier makes extreme errors,
e.g. confusing ⌘ with ¬ or with #; some interest-
ing examples of such errors arise when the phrases
contain pronouns (e.g. girl ⌘ she) or when the
relation uses a highly infrequent word sense (e.g.
photo ⌘ still).

7.2 The Nutcracker RTE System

To further test our classifier, we evaluate the use-
fulness of the automatic entailment predictions in
a downstream RTE task. We run our experiments
using Nutcracker, a state-of-the-art RTE system
based on formal semantics (Bjerva et al., 2014).
In the SemEval 2014 RTE challenge, this system
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Figure 4: Confusion matrices for classifier trained using only monolingual features (distributional and path) versus bilingual
features (paraphrase and translation). True labels are shown along rows, predicted along columns. The matrix is normalized
along rows, so that the predictions for each (true) class sum to 100%.

� F1 when excluding
All Lex. Dist. Path Para. Tran. WN

# 79 -2.0 -0.2 -1.2 -1.7 -0.2 -0.1
⌘ 57 -3.5 +0.2 -0.7 -2.4 -3.7 +0.5
A 68 -4.6 -0.3 -0.8 -0.8 -0.7 -1.6
¬ 49 -4.0 -0.8 -2.9 +0.3 -0.0 -2.2
⇠ 51 -4.9 -0.5 -0.7 -1.2 -0.9 -0.3

Table 5: F1 measure (⇥100) achieved by entailment classifier
using 10-fold cross validation on the training data.

Table 3 shines some light onto the differences
between monolingual and bilingual similarities.
While the monolingual asymmetric metrics are
good for identifying A pairs, the symmetric met-
rics consistently identify ¬ pairs; none of the
monolingual scores we explored were effective
in making the subtle distinction between ⌘ pairs
and the other types of paraphrase. In contrast,
the bilingual similarity metric is fairly precise
for identifying ⌘ pairs, but provides less infor-
mation for distinguishing between types of non-
equivalent paraphrase. These differences are fur-
ther exhibited in the confusion matrices shown in
Figure 4; when the classifier is trained using only
monolingual features, it misclassifies 26% of ¬
pairs as ⌘, whereas the bilingual features make
this error only 6% of the time. On the other hand,
the bilingual features completely fail to predict the
A class, calling over 80% of such pairs ⌘ or ⇠.

7 Evaluation

7.1 Intrinsic Evaluation

We test the performance of our classifier intrinsi-
cally, through its ability to reproduce the human
labels for the phrase pairs from the SICK test sen-
tences. Table 7 shows the precision and recall
achieved by the classifier for each of our 5 en-
tailment classes. The classifier is able to achieve

an overall 79% accuracy, reaching >70% preci-
sion while maintaining good levels of recall on all
classes.

True Pred. N Example misclassifications
⇠ # 169 boy/little, an empy/the air
# ⇠ 114 little/toy, color/hair
A ⇠ 108 drink/juice, ocean/surf
A # 97 in front of/the face of, vehicle/horse
A ⌘ 83 cat/kitten, pavement/sidewalk
⌘ A 46 big/grand, a girl/a young lady
A ¬ 29 kid/teenager, no small/a large
¬ A 29 old man/young man, a car/a window
# ⌘ 15 a person/one, a crowd/a large
⌘ # 9 he is/man is, photo/still
⌘ ¬ 1 girl is/she is

Table 6: Example misclassifications from some of the most
frequent and most interesting error categories.

Figure 4 shows the classifier’s confusion ma-
trix and Table 6 shows some examples of common
and interesting error cases. The majority of errors
(26%) come from confusing the ⇠ class with the
# class. This mistake is not too concerning from
an RTE perspective since ⇠ can be treated as a
special case of # (Section 5). There are very few
cases in which the classifier makes extreme errors,
e.g. confusing ⌘ with ¬ or with #; some interest-
ing examples of such errors arise when the phrases
contain pronouns (e.g. girl ⌘ she) or when the
relation uses a highly infrequent word sense (e.g.
photo ⌘ still).

7.2 The Nutcracker RTE System

To further test our classifier, we evaluate the use-
fulness of the automatic entailment predictions in
a downstream RTE task. We run our experiments
using Nutcracker, a state-of-the-art RTE system
based on formal semantics (Bjerva et al., 2014).
In the SemEval 2014 RTE challenge, this system
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Figure 4: Confusion matrices for classifier trained using only monolingual features (distributional and path) versus bilingual
features (paraphrase and translation). True labels are shown along rows, predicted along columns. The matrix is normalized
along rows, so that the predictions for each (true) class sum to 100%.

� F1 when excluding
All Lex. Dist. Path Para. Tran. WN

# 79 -2.0 -0.2 -1.2 -1.7 -0.2 -0.1
⌘ 57 -3.5 +0.2 -0.7 -2.4 -3.7 +0.5
A 68 -4.6 -0.3 -0.8 -0.8 -0.7 -1.6
¬ 49 -4.0 -0.8 -2.9 +0.3 -0.0 -2.2
⇠ 51 -4.9 -0.5 -0.7 -1.2 -0.9 -0.3

Table 5: F1 measure (⇥100) achieved by entailment classifier
using 10-fold cross validation on the training data.

Table 3 shines some light onto the differences
between monolingual and bilingual similarities.
While the monolingual asymmetric metrics are
good for identifying A pairs, the symmetric met-
rics consistently identify ¬ pairs; none of the
monolingual scores we explored were effective
in making the subtle distinction between ⌘ pairs
and the other types of paraphrase. In contrast,
the bilingual similarity metric is fairly precise
for identifying ⌘ pairs, but provides less infor-
mation for distinguishing between types of non-
equivalent paraphrase. These differences are fur-
ther exhibited in the confusion matrices shown in
Figure 4; when the classifier is trained using only
monolingual features, it misclassifies 26% of ¬
pairs as ⌘, whereas the bilingual features make
this error only 6% of the time. On the other hand,
the bilingual features completely fail to predict the
A class, calling over 80% of such pairs ⌘ or ⇠.

7 Evaluation

7.1 Intrinsic Evaluation

We test the performance of our classifier intrinsi-
cally, through its ability to reproduce the human
labels for the phrase pairs from the SICK test sen-
tences. Table 7 shows the precision and recall
achieved by the classifier for each of our 5 en-
tailment classes. The classifier is able to achieve

an overall 79% accuracy, reaching >70% preci-
sion while maintaining good levels of recall on all
classes.

True Pred. N Example misclassifications
⇠ # 169 boy/little, an empy/the air
# ⇠ 114 little/toy, color/hair
A ⇠ 108 drink/juice, ocean/surf
A # 97 in front of/the face of, vehicle/horse
A ⌘ 83 cat/kitten, pavement/sidewalk
⌘ A 46 big/grand, a girl/a young lady
A ¬ 29 kid/teenager, no small/a large
¬ A 29 old man/young man, a car/a window
# ⌘ 15 a person/one, a crowd/a large
⌘ # 9 he is/man is, photo/still
⌘ ¬ 1 girl is/she is

Table 6: Example misclassifications from some of the most
frequent and most interesting error categories.

Figure 4 shows the classifier’s confusion ma-
trix and Table 6 shows some examples of common
and interesting error cases. The majority of errors
(26%) come from confusing the ⇠ class with the
# class. This mistake is not too concerning from
an RTE perspective since ⇠ can be treated as a
special case of # (Section 5). There are very few
cases in which the classifier makes extreme errors,
e.g. confusing ⌘ with ¬ or with #; some interest-
ing examples of such errors arise when the phrases
contain pronouns (e.g. girl ⌘ she) or when the
relation uses a highly infrequent word sense (e.g.
photo ⌘ still).

7.2 The Nutcracker RTE System

To further test our classifier, we evaluate the use-
fulness of the automatic entailment predictions in
a downstream RTE task. We run our experiments
using Nutcracker, a state-of-the-art RTE system
based on formal semantics (Bjerva et al., 2014).
In the SemEval 2014 RTE challenge, this system
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Figure 4: Confusion matrices for classifier trained using only monolingual features (distributional and path) versus bilingual
features (paraphrase and translation). True labels are shown along rows, predicted along columns. The matrix is normalized
along rows, so that the predictions for each (true) class sum to 100%.

� F1 when excluding
All Lex. Dist. Path Para. Tran. WN

# 79 -2.0 -0.2 -1.2 -1.7 -0.2 -0.1
⌘ 57 -3.5 +0.2 -0.7 -2.4 -3.7 +0.5
A 68 -4.6 -0.3 -0.8 -0.8 -0.7 -1.6
¬ 49 -4.0 -0.8 -2.9 +0.3 -0.0 -2.2
⇠ 51 -4.9 -0.5 -0.7 -1.2 -0.9 -0.3

Table 5: F1 measure (⇥100) achieved by entailment classifier
using 10-fold cross validation on the training data.

Table 3 shines some light onto the differences
between monolingual and bilingual similarities.
While the monolingual asymmetric metrics are
good for identifying A pairs, the symmetric met-
rics consistently identify ¬ pairs; none of the
monolingual scores we explored were effective
in making the subtle distinction between ⌘ pairs
and the other types of paraphrase. In contrast,
the bilingual similarity metric is fairly precise
for identifying ⌘ pairs, but provides less infor-
mation for distinguishing between types of non-
equivalent paraphrase. These differences are fur-
ther exhibited in the confusion matrices shown in
Figure 4; when the classifier is trained using only
monolingual features, it misclassifies 26% of ¬
pairs as ⌘, whereas the bilingual features make
this error only 6% of the time. On the other hand,
the bilingual features completely fail to predict the
A class, calling over 80% of such pairs ⌘ or ⇠.

7 Evaluation

7.1 Intrinsic Evaluation

We test the performance of our classifier intrinsi-
cally, through its ability to reproduce the human
labels for the phrase pairs from the SICK test sen-
tences. Table 7 shows the precision and recall
achieved by the classifier for each of our 5 en-
tailment classes. The classifier is able to achieve

an overall 79% accuracy, reaching >70% preci-
sion while maintaining good levels of recall on all
classes.

True Pred. N Example misclassifications
⇠ # 169 boy/little, an empy/the air
# ⇠ 114 little/toy, color/hair
A ⇠ 108 drink/juice, ocean/surf
A # 97 in front of/the face of, vehicle/horse
A ⌘ 83 cat/kitten, pavement/sidewalk
⌘ A 46 big/grand, a girl/a young lady
A ¬ 29 kid/teenager, no small/a large
¬ A 29 old man/young man, a car/a window
# ⌘ 15 a person/one, a crowd/a large
⌘ # 9 he is/man is, photo/still
⌘ ¬ 1 girl is/she is

Table 6: Example misclassifications from some of the most
frequent and most interesting error categories.

Figure 4 shows the classifier’s confusion ma-
trix and Table 6 shows some examples of common
and interesting error cases. The majority of errors
(26%) come from confusing the ⇠ class with the
# class. This mistake is not too concerning from
an RTE perspective since ⇠ can be treated as a
special case of # (Section 5). There are very few
cases in which the classifier makes extreme errors,
e.g. confusing ⌘ with ¬ or with #; some interest-
ing examples of such errors arise when the phrases
contain pronouns (e.g. girl ⌘ she) or when the
relation uses a highly infrequent word sense (e.g.
photo ⌘ still).

7.2 The Nutcracker RTE System

To further test our classifier, we evaluate the use-
fulness of the automatic entailment predictions in
a downstream RTE task. We run our experiments
using Nutcracker, a state-of-the-art RTE system
based on formal semantics (Bjerva et al., 2014).
In the SemEval 2014 RTE challenge, this system
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Figure 4: Confusion matrices for classifier trained using only monolingual features (distributional and path) versus bilingual
features (paraphrase and translation). True labels are shown along rows, predicted along columns. The matrix is normalized
along rows, so that the predictions for each (true) class sum to 100%.

� F1 when excluding
All Lex. Dist. Path Para. Tran. WN

# 79 -2.0 -0.2 -1.2 -1.7 -0.2 -0.1
⌘ 57 -3.5 +0.2 -0.7 -2.4 -3.7 +0.5
A 68 -4.6 -0.3 -0.8 -0.8 -0.7 -1.6
¬ 49 -4.0 -0.8 -2.9 +0.3 -0.0 -2.2
⇠ 51 -4.9 -0.5 -0.7 -1.2 -0.9 -0.3

Table 5: F1 measure (⇥100) achieved by entailment classifier
using 10-fold cross validation on the training data.

Table 3 shines some light onto the differences
between monolingual and bilingual similarities.
While the monolingual asymmetric metrics are
good for identifying A pairs, the symmetric met-
rics consistently identify ¬ pairs; none of the
monolingual scores we explored were effective
in making the subtle distinction between ⌘ pairs
and the other types of paraphrase. In contrast,
the bilingual similarity metric is fairly precise
for identifying ⌘ pairs, but provides less infor-
mation for distinguishing between types of non-
equivalent paraphrase. These differences are fur-
ther exhibited in the confusion matrices shown in
Figure 4; when the classifier is trained using only
monolingual features, it misclassifies 26% of ¬
pairs as ⌘, whereas the bilingual features make
this error only 6% of the time. On the other hand,
the bilingual features completely fail to predict the
A class, calling over 80% of such pairs ⌘ or ⇠.

7 Evaluation

7.1 Intrinsic Evaluation

We test the performance of our classifier intrinsi-
cally, through its ability to reproduce the human
labels for the phrase pairs from the SICK test sen-
tences. Table 7 shows the precision and recall
achieved by the classifier for each of our 5 en-
tailment classes. The classifier is able to achieve

an overall 79% accuracy, reaching >70% preci-
sion while maintaining good levels of recall on all
classes.

True Pred. N Example misclassifications
⇠ # 169 boy/little, an empy/the air
# ⇠ 114 little/toy, color/hair
A ⇠ 108 drink/juice, ocean/surf
A # 97 in front of/the face of, vehicle/horse
A ⌘ 83 cat/kitten, pavement/sidewalk
⌘ A 46 big/grand, a girl/a young lady
A ¬ 29 kid/teenager, no small/a large
¬ A 29 old man/young man, a car/a window
# ⌘ 15 a person/one, a crowd/a large
⌘ # 9 he is/man is, photo/still
⌘ ¬ 1 girl is/she is

Table 6: Example misclassifications from some of the most
frequent and most interesting error categories.

Figure 4 shows the classifier’s confusion ma-
trix and Table 6 shows some examples of common
and interesting error cases. The majority of errors
(26%) come from confusing the ⇠ class with the
# class. This mistake is not too concerning from
an RTE perspective since ⇠ can be treated as a
special case of # (Section 5). There are very few
cases in which the classifier makes extreme errors,
e.g. confusing ⌘ with ¬ or with #; some interest-
ing examples of such errors arise when the phrases
contain pronouns (e.g. girl ⌘ she) or when the
relation uses a highly infrequent word sense (e.g.
photo ⌘ still).

7.2 The Nutcracker RTE System

To further test our classifier, we evaluate the use-
fulness of the automatic entailment predictions in
a downstream RTE task. We run our experiments
using Nutcracker, a state-of-the-art RTE system
based on formal semantics (Bjerva et al., 2014).
In the SemEval 2014 RTE challenge, this system
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Figure 4: Confusion matrices for classifier trained using only monolingual features (distributional and path) versus bilingual
features (paraphrase and translation). True labels are shown along rows, predicted along columns. The matrix is normalized
along rows, so that the predictions for each (true) class sum to 100%.

� F1 when excluding
All Lex. Dist. Path Para. Tran. WN

# 79 -2.0 -0.2 -1.2 -1.7 -0.2 -0.1
⌘ 57 -3.5 +0.2 -0.7 -2.4 -3.7 +0.5
A 68 -4.6 -0.3 -0.8 -0.8 -0.7 -1.6
¬ 49 -4.0 -0.8 -2.9 +0.3 -0.0 -2.2
⇠ 51 -4.9 -0.5 -0.7 -1.2 -0.9 -0.3

Table 5: F1 measure (⇥100) achieved by entailment classifier
using 10-fold cross validation on the training data.

Table 3 shines some light onto the differences
between monolingual and bilingual similarities.
While the monolingual asymmetric metrics are
good for identifying A pairs, the symmetric met-
rics consistently identify ¬ pairs; none of the
monolingual scores we explored were effective
in making the subtle distinction between ⌘ pairs
and the other types of paraphrase. In contrast,
the bilingual similarity metric is fairly precise
for identifying ⌘ pairs, but provides less infor-
mation for distinguishing between types of non-
equivalent paraphrase. These differences are fur-
ther exhibited in the confusion matrices shown in
Figure 4; when the classifier is trained using only
monolingual features, it misclassifies 26% of ¬
pairs as ⌘, whereas the bilingual features make
this error only 6% of the time. On the other hand,
the bilingual features completely fail to predict the
A class, calling over 80% of such pairs ⌘ or ⇠.

7 Evaluation

7.1 Intrinsic Evaluation

We test the performance of our classifier intrinsi-
cally, through its ability to reproduce the human
labels for the phrase pairs from the SICK test sen-
tences. Table 7 shows the precision and recall
achieved by the classifier for each of our 5 en-
tailment classes. The classifier is able to achieve

an overall 79% accuracy, reaching >70% preci-
sion while maintaining good levels of recall on all
classes.

True Pred. N Example misclassifications
⇠ # 169 boy/little, an empy/the air
# ⇠ 114 little/toy, color/hair
A ⇠ 108 drink/juice, ocean/surf
A # 97 in front of/the face of, vehicle/horse
A ⌘ 83 cat/kitten, pavement/sidewalk
⌘ A 46 big/grand, a girl/a young lady
A ¬ 29 kid/teenager, no small/a large
¬ A 29 old man/young man, a car/a window
# ⌘ 15 a person/one, a crowd/a large
⌘ # 9 he is/man is, photo/still
⌘ ¬ 1 girl is/she is

Table 6: Example misclassifications from some of the most
frequent and most interesting error categories.

Figure 4 shows the classifier’s confusion ma-
trix and Table 6 shows some examples of common
and interesting error cases. The majority of errors
(26%) come from confusing the ⇠ class with the
# class. This mistake is not too concerning from
an RTE perspective since ⇠ can be treated as a
special case of # (Section 5). There are very few
cases in which the classifier makes extreme errors,
e.g. confusing ⌘ with ¬ or with #; some interest-
ing examples of such errors arise when the phrases
contain pronouns (e.g. girl ⌘ she) or when the
relation uses a highly infrequent word sense (e.g.
photo ⌘ still).

7.2 The Nutcracker RTE System

To further test our classifier, we evaluate the use-
fulness of the automatic entailment predictions in
a downstream RTE task. We run our experiments
using Nutcracker, a state-of-the-art RTE system
based on formal semantics (Bjerva et al., 2014).
In the SemEval 2014 RTE challenge, this system
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Up to 53% error rate by assuming all 
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When does N entail AN?
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(probably sandy) (probably not sandy)

When does N entail AN?
Sometimes, it is a property of the adjective and noun…
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When does N entail AN?
…or even just the adjective.

Compositional Entailment in Adjective Nouns. (Pavlick and Callison-Burch ACL 2016)



The [deadly] attack killed at least 12 civilians. 

The [entire] bill is now subject to approval by 
the parliament. 

Equivalence AN

When does N entail AN?
Other times, it is a property of the context+word knowledge.
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Red numbers spelled out their [perfect] record: 9-2. 

Schilling even stayed busy after serving Epstein 
turkey at his  [former] home on Thursday.
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When does N entail AN?
NOT

 
^

Other times, it is a property of the context+word knowledge.
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on the [Japanese] economy.
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When does N entail AN?
NOT

 
^

should

A dictionary of nonsubsective adjectives. (Nayak et al. Tech Report 2014)
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unlikely 
likely 

…
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Figure 1: Three main classes of adjectives. If their entailment behavior is consistent with their theoretical
definitions, we would expect our annotations (Section 3) to produce the insertion (blue) and deletion
(red) patterns shown by the bar graphs. Bars (left to right) represent CONTRADICTION, UNKNOWN, and
ENTAILMENT

While these generalizations are intuitive, there
is little experimental evidence to support them.
In this paper, we collect human judgements of
the validity of inferences following from the in-
sertion and deletion of various classes of adjec-
tives and analyze the results. Our findings suggest
that, in practice, most sentences involving non-
subsective ANs can be safely generalized to state-
ments about the N. That is, non-subsective adjec-
tives often behave like normal, subsective adjec-
tives. On further analysis, we reveal that, when
adjectives do behave non-subsectively, they often
exhibit asymmetric entailment behavior in which
insertion leads to contradictions (ID ) ¬ fake ID)
but deletion leads to entailments (fake ID ) ID).
We present anecdotal evidence for how the en-
tailment associated with inserting/deleting a non-
subsective adjective depends on the salient prop-
erties of the noun phrase under discussion, rather
than on the adjective itself.

2 Background and Related Work

Classes of Adjectives. Adjectives are com-
monly classified taxonomically as either subsec-
tive or non-subsective (Kamp and Partee, 1995).
Subsective adjectives are adjectives which pick
out a subset of the set denoted by the unmodified
noun; that is, AN ⇢ N1. For non-subsective adjec-
tives, in contrast, the AN cannot be guaranteed to
be a subset of N. For example, clever is subsective,
and so a clever thief is always a thief. However,

1We use the notation N and AN to refer both the the nat-
ural language expression itself (e.g. red car) as well as its
denotation, e.g. {x|x is a red car}.

alleged is non-subsective, so there are many pos-
sible worlds in which an alleged thief is not in fact
a thief. Of course, there may also be many possi-
ble worlds in which the alleged thief is a thief, but
the word alleged, being non-subsective, does not
guarantee this to hold.

Non-subsective adjectives can be further di-
vided into two classes: privative and plain. Sets
denoted by privative ANs are completely disjoint
from the set denoted by the head N (AN \ N =
;), and this mutual exclusivity is encoded in the
meaning of the A itself. For example, fake is con-
sidered to be a quintessential privative adjective
since, given the usual definition of fake, a fake ID
can not actually be an ID. For plain non-subsective
adjectives, there may be worlds in which the AN
is and N, and worlds in which the AN is not an N:
neither inference is guaranteed by the meaning of
the A. As mentioned above, alleged is quintessen-
tially plain non-subsective since, for example, an
alleged thief may or may not be an actual thief.
In short, we can summarize the classes of adjec-
tives in the following way: subsective adjectives
entail the nouns they modify, privative adjectives
contradict the nouns they modify, and plain non-
subsective adjectives are compatible with (but do
not entail) the nouns they modify. Figure 1 depicts
these distinctions.

While the hierarchical classification of adjec-
tives described above is widely accepted and often
applied in NLP tasks (Amoia and Gardent, 2006;
Amoia and Gardent, 2007; Boleda et al., 2012;
McCrae et al., 2014), it is not undisputed. Some
linguists take the position that in fact privative ad-
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While these generalizations are intuitive, there
is little experimental evidence to support them.
In this paper, we collect human judgements of
the validity of inferences following from the in-
sertion and deletion of various classes of adjec-
tives and analyze the results. Our findings suggest
that, in practice, most sentences involving non-
subsective ANs can be safely generalized to state-
ments about the N. That is, non-subsective adjec-
tives often behave like normal, subsective adjec-
tives. On further analysis, we reveal that, when
adjectives do behave non-subsectively, they often
exhibit asymmetric entailment behavior in which
insertion leads to contradictions (ID ) ¬ fake ID)
but deletion leads to entailments (fake ID ) ID).
We present anecdotal evidence for how the en-
tailment associated with inserting/deleting a non-
subsective adjective depends on the salient prop-
erties of the noun phrase under discussion, rather
than on the adjective itself.

2 Background and Related Work

Classes of Adjectives. Adjectives are com-
monly classified taxonomically as either subsec-
tive or non-subsective (Kamp and Partee, 1995).
Subsective adjectives are adjectives which pick
out a subset of the set denoted by the unmodified
noun; that is, AN ⇢ N1. For non-subsective adjec-
tives, in contrast, the AN cannot be guaranteed to
be a subset of N. For example, clever is subsective,
and so a clever thief is always a thief. However,

1We use the notation N and AN to refer both the the nat-
ural language expression itself (e.g. red car) as well as its
denotation, e.g. {x|x is a red car}.

alleged is non-subsective, so there are many pos-
sible worlds in which an alleged thief is not in fact
a thief. Of course, there may also be many possi-
ble worlds in which the alleged thief is a thief, but
the word alleged, being non-subsective, does not
guarantee this to hold.

Non-subsective adjectives can be further di-
vided into two classes: privative and plain. Sets
denoted by privative ANs are completely disjoint
from the set denoted by the head N (AN \ N =
;), and this mutual exclusivity is encoded in the
meaning of the A itself. For example, fake is con-
sidered to be a quintessential privative adjective
since, given the usual definition of fake, a fake ID
can not actually be an ID. For plain non-subsective
adjectives, there may be worlds in which the AN
is and N, and worlds in which the AN is not an N:
neither inference is guaranteed by the meaning of
the A. As mentioned above, alleged is quintessen-
tially plain non-subsective since, for example, an
alleged thief may or may not be an actual thief.
In short, we can summarize the classes of adjec-
tives in the following way: subsective adjectives
entail the nouns they modify, privative adjectives
contradict the nouns they modify, and plain non-
subsective adjectives are compatible with (but do
not entail) the nouns they modify. Figure 1 depicts
these distinctions.

While the hierarchical classification of adjec-
tives described above is widely accepted and often
applied in NLP tasks (Amoia and Gardent, 2006;
Amoia and Gardent, 2007; Boleda et al., 2012;
McCrae et al., 2014), it is not undisputed. Some
linguists take the position that in fact privative ad-

(a) Privative (b) Plain Non-Sub. (c) Subsective

Figure 2: Observed entailment judgements for insertion (blue) and deletion (red) of adjectives. Compare
to expected distributions in Figure 1.

to receive labels of UNKNOWN in both directions.
We expect the subsective adjectives to receive la-
bels of ENTAILMENT in the deletion direction (red
car ) car) and labels of UNKNOWN in the inser-
tion direction (car 6) red car). Figure 1 depicts
these expected distributions.

Observations. The observed entailment patterns
for insertion and deletion of non-subsective adjec-
tives are shown in Figure 2. Our control sample
of subsective adjectives (Figure 2c) largely pro-
duced the expected results, with 96% of deletions
producing ENTAILMENTs and 73% of insertions
producing UNKNOWNs.3 The entailment patterns
produced by the non-subsective adjectives, how-
ever, did not match our predictions. The plain non-
subsective adjectives (e.g. alleged) behave nearly
identically to how we expect regular, subsective
adjectives to behave (Figure 2b). That is, in 80%
of cases, deleting the plain non-subsective adjec-
tive was judged to produce ENTAILMENT, rather
than the expected UNKNOWN. The examples in
Table 2 shed some light onto why this is the case.
Often, the differences between N and AN are not
relevant to the main point of the utterance. For ex-
ample, while an expected surge in unemployment
is not a surge in unemployment, a policy that deals
with an expected surge deals with a surge.

The privative adjectives (e.g. fake) also fail
to match the predicted distribution. While in-
sertions often produce the expected CONTRADIC-
TIONs, deletions produce a surprising number of
ENTAILMENTs (Figure 2a). Such a pattern does
not fit into any of the adjective classes from Fig-
ure 1. While some ANs (e.g. counterfeit money)
behave in the prototypically privative way, others

3A full discussion of the 27% of insertions that deviated
from the expected behavior is given in Pavlick and Callison-
Burch (2016).

(1) Swiss officials on Friday said they’ve launched an
investigation into Urs Tinner’s alleged role.

(2) To deal with an expected surge in unemployment,
the plan includes a huge temporary jobs program.

(3) They kept it close for a half and had a theoretical
chance come the third quarter.

Table 2: Contrary to expectations, the deletion of
plain non-subsective adjectives often preserves the
(plausible) truth in a model. E.g. alleged role 6)
role, but investigation into alleged role ) investi-
gation into role.

(e.g. mythical beast) have the property in which
N)¬AN, but AN)N (Figure 3). Table 3 pro-
vides some telling examples of how this AN)N
inference, in the case of privative adjectives, often
depends less on the adjective itself, and more on
properties of the modified noun that are at issue in
the given context. For example, in Table 3 Exam-
ple 2(a), a mock debate probably contains enough
of the relevant properties (namely, arguments) that
it can entail debate, while in Example 2(b), a mock
execution lacks the single most important property
(the death of the executee) and so cannot entail ex-
ecution. (Note that, from Example 3(b), it appears
the jury is still out on whether leaps in artificial
intelligence entail leaps in intelligence...)

5 Discussion

The results presented suggest a few important pat-
terns for NLP systems. First, that while a non-
subsective AN might not be an instance of the N
(taxonomically speaking), statements that are true
of an AN are often true of the N as well. This is
relevant for IE and QA systems, and is likely to be-
come more important as NLP systems focus more
on “micro reading” tasks (Nakashole and Mitchell,
2014), where facts must be inferred from single
documents or sentences, rather than by exploiting
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While these generalizations are intuitive, there
is little experimental evidence to support them.
In this paper, we collect human judgements of
the validity of inferences following from the in-
sertion and deletion of various classes of adjec-
tives and analyze the results. Our findings suggest
that, in practice, most sentences involving non-
subsective ANs can be safely generalized to state-
ments about the N. That is, non-subsective adjec-
tives often behave like normal, subsective adjec-
tives. On further analysis, we reveal that, when
adjectives do behave non-subsectively, they often
exhibit asymmetric entailment behavior in which
insertion leads to contradictions (ID ) ¬ fake ID)
but deletion leads to entailments (fake ID ) ID).
We present anecdotal evidence for how the en-
tailment associated with inserting/deleting a non-
subsective adjective depends on the salient prop-
erties of the noun phrase under discussion, rather
than on the adjective itself.

2 Background and Related Work

Classes of Adjectives. Adjectives are com-
monly classified taxonomically as either subsec-
tive or non-subsective (Kamp and Partee, 1995).
Subsective adjectives are adjectives which pick
out a subset of the set denoted by the unmodified
noun; that is, AN ⇢ N1. For non-subsective adjec-
tives, in contrast, the AN cannot be guaranteed to
be a subset of N. For example, clever is subsective,
and so a clever thief is always a thief. However,

1We use the notation N and AN to refer both the the nat-
ural language expression itself (e.g. red car) as well as its
denotation, e.g. {x|x is a red car}.

alleged is non-subsective, so there are many pos-
sible worlds in which an alleged thief is not in fact
a thief. Of course, there may also be many possi-
ble worlds in which the alleged thief is a thief, but
the word alleged, being non-subsective, does not
guarantee this to hold.

Non-subsective adjectives can be further di-
vided into two classes: privative and plain. Sets
denoted by privative ANs are completely disjoint
from the set denoted by the head N (AN \ N =
;), and this mutual exclusivity is encoded in the
meaning of the A itself. For example, fake is con-
sidered to be a quintessential privative adjective
since, given the usual definition of fake, a fake ID
can not actually be an ID. For plain non-subsective
adjectives, there may be worlds in which the AN
is and N, and worlds in which the AN is not an N:
neither inference is guaranteed by the meaning of
the A. As mentioned above, alleged is quintessen-
tially plain non-subsective since, for example, an
alleged thief may or may not be an actual thief.
In short, we can summarize the classes of adjec-
tives in the following way: subsective adjectives
entail the nouns they modify, privative adjectives
contradict the nouns they modify, and plain non-
subsective adjectives are compatible with (but do
not entail) the nouns they modify. Figure 1 depicts
these distinctions.

While the hierarchical classification of adjec-
tives described above is widely accepted and often
applied in NLP tasks (Amoia and Gardent, 2006;
Amoia and Gardent, 2007; Boleda et al., 2012;
McCrae et al., 2014), it is not undisputed. Some
linguists take the position that in fact privative ad-

(a) Privative (b) Plain Non-Sub. (c) Subsective

Figure 2: Observed entailment judgements for insertion (blue) and deletion (red) of adjectives. Compare
to expected distributions in Figure 1.

to receive labels of UNKNOWN in both directions.
We expect the subsective adjectives to receive la-
bels of ENTAILMENT in the deletion direction (red
car ) car) and labels of UNKNOWN in the inser-
tion direction (car 6) red car). Figure 1 depicts
these expected distributions.

Observations. The observed entailment patterns
for insertion and deletion of non-subsective adjec-
tives are shown in Figure 2. Our control sample
of subsective adjectives (Figure 2c) largely pro-
duced the expected results, with 96% of deletions
producing ENTAILMENTs and 73% of insertions
producing UNKNOWNs.3 The entailment patterns
produced by the non-subsective adjectives, how-
ever, did not match our predictions. The plain non-
subsective adjectives (e.g. alleged) behave nearly
identically to how we expect regular, subsective
adjectives to behave (Figure 2b). That is, in 80%
of cases, deleting the plain non-subsective adjec-
tive was judged to produce ENTAILMENT, rather
than the expected UNKNOWN. The examples in
Table 2 shed some light onto why this is the case.
Often, the differences between N and AN are not
relevant to the main point of the utterance. For ex-
ample, while an expected surge in unemployment
is not a surge in unemployment, a policy that deals
with an expected surge deals with a surge.

The privative adjectives (e.g. fake) also fail
to match the predicted distribution. While in-
sertions often produce the expected CONTRADIC-
TIONs, deletions produce a surprising number of
ENTAILMENTs (Figure 2a). Such a pattern does
not fit into any of the adjective classes from Fig-
ure 1. While some ANs (e.g. counterfeit money)
behave in the prototypically privative way, others

3A full discussion of the 27% of insertions that deviated
from the expected behavior is given in Pavlick and Callison-
Burch (2016).

(1) Swiss officials on Friday said they’ve launched an
investigation into Urs Tinner’s alleged role.

(2) To deal with an expected surge in unemployment,
the plan includes a huge temporary jobs program.

(3) They kept it close for a half and had a theoretical
chance come the third quarter.

Table 2: Contrary to expectations, the deletion of
plain non-subsective adjectives often preserves the
(plausible) truth in a model. E.g. alleged role 6)
role, but investigation into alleged role ) investi-
gation into role.

(e.g. mythical beast) have the property in which
N)¬AN, but AN)N (Figure 3). Table 3 pro-
vides some telling examples of how this AN)N
inference, in the case of privative adjectives, often
depends less on the adjective itself, and more on
properties of the modified noun that are at issue in
the given context. For example, in Table 3 Exam-
ple 2(a), a mock debate probably contains enough
of the relevant properties (namely, arguments) that
it can entail debate, while in Example 2(b), a mock
execution lacks the single most important property
(the death of the executee) and so cannot entail ex-
ecution. (Note that, from Example 3(b), it appears
the jury is still out on whether leaps in artificial
intelligence entail leaps in intelligence...)

5 Discussion

The results presented suggest a few important pat-
terns for NLP systems. First, that while a non-
subsective AN might not be an instance of the N
(taxonomically speaking), statements that are true
of an AN are often true of the N as well. This is
relevant for IE and QA systems, and is likely to be-
come more important as NLP systems focus more
on “micro reading” tasks (Nakashole and Mitchell,
2014), where facts must be inferred from single
documents or sentences, rather than by exploiting
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While these generalizations are intuitive, there
is little experimental evidence to support them.
In this paper, we collect human judgements of
the validity of inferences following from the in-
sertion and deletion of various classes of adjec-
tives and analyze the results. Our findings suggest
that, in practice, most sentences involving non-
subsective ANs can be safely generalized to state-
ments about the N. That is, non-subsective adjec-
tives often behave like normal, subsective adjec-
tives. On further analysis, we reveal that, when
adjectives do behave non-subsectively, they often
exhibit asymmetric entailment behavior in which
insertion leads to contradictions (ID ) ¬ fake ID)
but deletion leads to entailments (fake ID ) ID).
We present anecdotal evidence for how the en-
tailment associated with inserting/deleting a non-
subsective adjective depends on the salient prop-
erties of the noun phrase under discussion, rather
than on the adjective itself.

2 Background and Related Work

Classes of Adjectives. Adjectives are com-
monly classified taxonomically as either subsec-
tive or non-subsective (Kamp and Partee, 1995).
Subsective adjectives are adjectives which pick
out a subset of the set denoted by the unmodified
noun; that is, AN ⇢ N1. For non-subsective adjec-
tives, in contrast, the AN cannot be guaranteed to
be a subset of N. For example, clever is subsective,
and so a clever thief is always a thief. However,

1We use the notation N and AN to refer both the the nat-
ural language expression itself (e.g. red car) as well as its
denotation, e.g. {x|x is a red car}.

alleged is non-subsective, so there are many pos-
sible worlds in which an alleged thief is not in fact
a thief. Of course, there may also be many possi-
ble worlds in which the alleged thief is a thief, but
the word alleged, being non-subsective, does not
guarantee this to hold.

Non-subsective adjectives can be further di-
vided into two classes: privative and plain. Sets
denoted by privative ANs are completely disjoint
from the set denoted by the head N (AN \ N =
;), and this mutual exclusivity is encoded in the
meaning of the A itself. For example, fake is con-
sidered to be a quintessential privative adjective
since, given the usual definition of fake, a fake ID
can not actually be an ID. For plain non-subsective
adjectives, there may be worlds in which the AN
is and N, and worlds in which the AN is not an N:
neither inference is guaranteed by the meaning of
the A. As mentioned above, alleged is quintessen-
tially plain non-subsective since, for example, an
alleged thief may or may not be an actual thief.
In short, we can summarize the classes of adjec-
tives in the following way: subsective adjectives
entail the nouns they modify, privative adjectives
contradict the nouns they modify, and plain non-
subsective adjectives are compatible with (but do
not entail) the nouns they modify. Figure 1 depicts
these distinctions.

While the hierarchical classification of adjec-
tives described above is widely accepted and often
applied in NLP tasks (Amoia and Gardent, 2006;
Amoia and Gardent, 2007; Boleda et al., 2012;
McCrae et al., 2014), it is not undisputed. Some
linguists take the position that in fact privative ad-
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While these generalizations are intuitive, there
is little experimental evidence to support them.
In this paper, we collect human judgements of
the validity of inferences following from the in-
sertion and deletion of various classes of adjec-
tives and analyze the results. Our findings suggest
that, in practice, most sentences involving non-
subsective ANs can be safely generalized to state-
ments about the N. That is, non-subsective adjec-
tives often behave like normal, subsective adjec-
tives. On further analysis, we reveal that, when
adjectives do behave non-subsectively, they often
exhibit asymmetric entailment behavior in which
insertion leads to contradictions (ID ) ¬ fake ID)
but deletion leads to entailments (fake ID ) ID).
We present anecdotal evidence for how the en-
tailment associated with inserting/deleting a non-
subsective adjective depends on the salient prop-
erties of the noun phrase under discussion, rather
than on the adjective itself.

2 Background and Related Work

Classes of Adjectives. Adjectives are com-
monly classified taxonomically as either subsec-
tive or non-subsective (Kamp and Partee, 1995).
Subsective adjectives are adjectives which pick
out a subset of the set denoted by the unmodified
noun; that is, AN ⇢ N1. For non-subsective adjec-
tives, in contrast, the AN cannot be guaranteed to
be a subset of N. For example, clever is subsective,
and so a clever thief is always a thief. However,

1We use the notation N and AN to refer both the the nat-
ural language expression itself (e.g. red car) as well as its
denotation, e.g. {x|x is a red car}.

alleged is non-subsective, so there are many pos-
sible worlds in which an alleged thief is not in fact
a thief. Of course, there may also be many possi-
ble worlds in which the alleged thief is a thief, but
the word alleged, being non-subsective, does not
guarantee this to hold.

Non-subsective adjectives can be further di-
vided into two classes: privative and plain. Sets
denoted by privative ANs are completely disjoint
from the set denoted by the head N (AN \ N =
;), and this mutual exclusivity is encoded in the
meaning of the A itself. For example, fake is con-
sidered to be a quintessential privative adjective
since, given the usual definition of fake, a fake ID
can not actually be an ID. For plain non-subsective
adjectives, there may be worlds in which the AN
is and N, and worlds in which the AN is not an N:
neither inference is guaranteed by the meaning of
the A. As mentioned above, alleged is quintessen-
tially plain non-subsective since, for example, an
alleged thief may or may not be an actual thief.
In short, we can summarize the classes of adjec-
tives in the following way: subsective adjectives
entail the nouns they modify, privative adjectives
contradict the nouns they modify, and plain non-
subsective adjectives are compatible with (but do
not entail) the nouns they modify. Figure 1 depicts
these distinctions.

While the hierarchical classification of adjec-
tives described above is widely accepted and often
applied in NLP tasks (Amoia and Gardent, 2006;
Amoia and Gardent, 2007; Boleda et al., 2012;
McCrae et al., 2014), it is not undisputed. Some
linguists take the position that in fact privative ad-

(a) Privative (b) Plain Non-Sub. (c) Subsective

Figure 2: Observed entailment judgements for insertion (blue) and deletion (red) of adjectives. Compare
to expected distributions in Figure 1.

to receive labels of UNKNOWN in both directions.
We expect the subsective adjectives to receive la-
bels of ENTAILMENT in the deletion direction (red
car ) car) and labels of UNKNOWN in the inser-
tion direction (car 6) red car). Figure 1 depicts
these expected distributions.

Observations. The observed entailment patterns
for insertion and deletion of non-subsective adjec-
tives are shown in Figure 2. Our control sample
of subsective adjectives (Figure 2c) largely pro-
duced the expected results, with 96% of deletions
producing ENTAILMENTs and 73% of insertions
producing UNKNOWNs.3 The entailment patterns
produced by the non-subsective adjectives, how-
ever, did not match our predictions. The plain non-
subsective adjectives (e.g. alleged) behave nearly
identically to how we expect regular, subsective
adjectives to behave (Figure 2b). That is, in 80%
of cases, deleting the plain non-subsective adjec-
tive was judged to produce ENTAILMENT, rather
than the expected UNKNOWN. The examples in
Table 2 shed some light onto why this is the case.
Often, the differences between N and AN are not
relevant to the main point of the utterance. For ex-
ample, while an expected surge in unemployment
is not a surge in unemployment, a policy that deals
with an expected surge deals with a surge.

The privative adjectives (e.g. fake) also fail
to match the predicted distribution. While in-
sertions often produce the expected CONTRADIC-
TIONs, deletions produce a surprising number of
ENTAILMENTs (Figure 2a). Such a pattern does
not fit into any of the adjective classes from Fig-
ure 1. While some ANs (e.g. counterfeit money)
behave in the prototypically privative way, others

3A full discussion of the 27% of insertions that deviated
from the expected behavior is given in Pavlick and Callison-
Burch (2016).

(1) Swiss officials on Friday said they’ve launched an
investigation into Urs Tinner’s alleged role.

(2) To deal with an expected surge in unemployment,
the plan includes a huge temporary jobs program.

(3) They kept it close for a half and had a theoretical
chance come the third quarter.

Table 2: Contrary to expectations, the deletion of
plain non-subsective adjectives often preserves the
(plausible) truth in a model. E.g. alleged role 6)
role, but investigation into alleged role ) investi-
gation into role.

(e.g. mythical beast) have the property in which
N)¬AN, but AN)N (Figure 3). Table 3 pro-
vides some telling examples of how this AN)N
inference, in the case of privative adjectives, often
depends less on the adjective itself, and more on
properties of the modified noun that are at issue in
the given context. For example, in Table 3 Exam-
ple 2(a), a mock debate probably contains enough
of the relevant properties (namely, arguments) that
it can entail debate, while in Example 2(b), a mock
execution lacks the single most important property
(the death of the executee) and so cannot entail ex-
ecution. (Note that, from Example 3(b), it appears
the jury is still out on whether leaps in artificial
intelligence entail leaps in intelligence...)

5 Discussion

The results presented suggest a few important pat-
terns for NLP systems. First, that while a non-
subsective AN might not be an instance of the N
(taxonomically speaking), statements that are true
of an AN are often true of the N as well. This is
relevant for IE and QA systems, and is likely to be-
come more important as NLP systems focus more
on “micro reading” tasks (Nakashole and Mitchell,
2014), where facts must be inferred from single
documents or sentences, rather than by exploiting
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When does N entail AN?
NOT

 
^

should

She was carrying a fake gun. 
She was carrying a gun.

Don’t behave symmetrically.

The 27-year-old Gazan seeks an id to 
get through security checkpoints and 

find work in Cairo.

Does he seek a fake id?

ANN

Privative 
(e.g. fake)

Plain Non-subsective 
(e.g. alleged)

ANN AN

Subsective 
(e.g. red)

Figure 1: Three main classes of adjectives. If their entailment behavior is consistent with their theoretical
definitions, we would expect our annotations (Section 3) to produce the insertion (blue) and deletion
(red) patterns shown by the bar graphs. Bars (left to right) represent CONTRADICTION, UNKNOWN, and
ENTAILMENT

While these generalizations are intuitive, there
is little experimental evidence to support them.
In this paper, we collect human judgements of
the validity of inferences following from the in-
sertion and deletion of various classes of adjec-
tives and analyze the results. Our findings suggest
that, in practice, most sentences involving non-
subsective ANs can be safely generalized to state-
ments about the N. That is, non-subsective adjec-
tives often behave like normal, subsective adjec-
tives. On further analysis, we reveal that, when
adjectives do behave non-subsectively, they often
exhibit asymmetric entailment behavior in which
insertion leads to contradictions (ID ) ¬ fake ID)
but deletion leads to entailments (fake ID ) ID).
We present anecdotal evidence for how the en-
tailment associated with inserting/deleting a non-
subsective adjective depends on the salient prop-
erties of the noun phrase under discussion, rather
than on the adjective itself.

2 Background and Related Work

Classes of Adjectives. Adjectives are com-
monly classified taxonomically as either subsec-
tive or non-subsective (Kamp and Partee, 1995).
Subsective adjectives are adjectives which pick
out a subset of the set denoted by the unmodified
noun; that is, AN ⇢ N1. For non-subsective adjec-
tives, in contrast, the AN cannot be guaranteed to
be a subset of N. For example, clever is subsective,
and so a clever thief is always a thief. However,

1We use the notation N and AN to refer both the the nat-
ural language expression itself (e.g. red car) as well as its
denotation, e.g. {x|x is a red car}.

alleged is non-subsective, so there are many pos-
sible worlds in which an alleged thief is not in fact
a thief. Of course, there may also be many possi-
ble worlds in which the alleged thief is a thief, but
the word alleged, being non-subsective, does not
guarantee this to hold.

Non-subsective adjectives can be further di-
vided into two classes: privative and plain. Sets
denoted by privative ANs are completely disjoint
from the set denoted by the head N (AN \ N =
;), and this mutual exclusivity is encoded in the
meaning of the A itself. For example, fake is con-
sidered to be a quintessential privative adjective
since, given the usual definition of fake, a fake ID
can not actually be an ID. For plain non-subsective
adjectives, there may be worlds in which the AN
is and N, and worlds in which the AN is not an N:
neither inference is guaranteed by the meaning of
the A. As mentioned above, alleged is quintessen-
tially plain non-subsective since, for example, an
alleged thief may or may not be an actual thief.
In short, we can summarize the classes of adjec-
tives in the following way: subsective adjectives
entail the nouns they modify, privative adjectives
contradict the nouns they modify, and plain non-
subsective adjectives are compatible with (but do
not entail) the nouns they modify. Figure 1 depicts
these distinctions.

While the hierarchical classification of adjec-
tives described above is widely accepted and often
applied in NLP tasks (Amoia and Gardent, 2006;
Amoia and Gardent, 2007; Boleda et al., 2012;
McCrae et al., 2014), it is not undisputed. Some
linguists take the position that in fact privative ad-

(a) Privative (b) Plain Non-Sub. (c) Subsective

Figure 2: Observed entailment judgements for insertion (blue) and deletion (red) of adjectives. Compare
to expected distributions in Figure 1.

to receive labels of UNKNOWN in both directions.
We expect the subsective adjectives to receive la-
bels of ENTAILMENT in the deletion direction (red
car ) car) and labels of UNKNOWN in the inser-
tion direction (car 6) red car). Figure 1 depicts
these expected distributions.

Observations. The observed entailment patterns
for insertion and deletion of non-subsective adjec-
tives are shown in Figure 2. Our control sample
of subsective adjectives (Figure 2c) largely pro-
duced the expected results, with 96% of deletions
producing ENTAILMENTs and 73% of insertions
producing UNKNOWNs.3 The entailment patterns
produced by the non-subsective adjectives, how-
ever, did not match our predictions. The plain non-
subsective adjectives (e.g. alleged) behave nearly
identically to how we expect regular, subsective
adjectives to behave (Figure 2b). That is, in 80%
of cases, deleting the plain non-subsective adjec-
tive was judged to produce ENTAILMENT, rather
than the expected UNKNOWN. The examples in
Table 2 shed some light onto why this is the case.
Often, the differences between N and AN are not
relevant to the main point of the utterance. For ex-
ample, while an expected surge in unemployment
is not a surge in unemployment, a policy that deals
with an expected surge deals with a surge.

The privative adjectives (e.g. fake) also fail
to match the predicted distribution. While in-
sertions often produce the expected CONTRADIC-
TIONs, deletions produce a surprising number of
ENTAILMENTs (Figure 2a). Such a pattern does
not fit into any of the adjective classes from Fig-
ure 1. While some ANs (e.g. counterfeit money)
behave in the prototypically privative way, others

3A full discussion of the 27% of insertions that deviated
from the expected behavior is given in Pavlick and Callison-
Burch (2016).

(1) Swiss officials on Friday said they’ve launched an
investigation into Urs Tinner’s alleged role.

(2) To deal with an expected surge in unemployment,
the plan includes a huge temporary jobs program.

(3) They kept it close for a half and had a theoretical
chance come the third quarter.

Table 2: Contrary to expectations, the deletion of
plain non-subsective adjectives often preserves the
(plausible) truth in a model. E.g. alleged role 6)
role, but investigation into alleged role ) investi-
gation into role.

(e.g. mythical beast) have the property in which
N)¬AN, but AN)N (Figure 3). Table 3 pro-
vides some telling examples of how this AN)N
inference, in the case of privative adjectives, often
depends less on the adjective itself, and more on
properties of the modified noun that are at issue in
the given context. For example, in Table 3 Exam-
ple 2(a), a mock debate probably contains enough
of the relevant properties (namely, arguments) that
it can entail debate, while in Example 2(b), a mock
execution lacks the single most important property
(the death of the executee) and so cannot entail ex-
ecution. (Note that, from Example 3(b), it appears
the jury is still out on whether leaps in artificial
intelligence entail leaps in intelligence...)

5 Discussion

The results presented suggest a few important pat-
terns for NLP systems. First, that while a non-
subsective AN might not be an instance of the N
(taxonomically speaking), statements that are true
of an AN are often true of the N as well. This is
relevant for IE and QA systems, and is likely to be-
come more important as NLP systems focus more
on “micro reading” tasks (Nakashole and Mitchell,
2014), where facts must be inferred from single
documents or sentences, rather than by exploiting
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When does N entail AN?
NOT

 
^

should

She was carrying a fake gun. 
She was carrying a gun.

Don’t behave symmetrically.

The 27-year-old Gazan seeks an id to 
get through security checkpoints and 

find work in Cairo.

Does he seek a fake id? ✘

ANN

Privative 
(e.g. fake)

Plain Non-subsective 
(e.g. alleged)

ANN AN

Subsective 
(e.g. red)

Figure 1: Three main classes of adjectives. If their entailment behavior is consistent with their theoretical
definitions, we would expect our annotations (Section 3) to produce the insertion (blue) and deletion
(red) patterns shown by the bar graphs. Bars (left to right) represent CONTRADICTION, UNKNOWN, and
ENTAILMENT

While these generalizations are intuitive, there
is little experimental evidence to support them.
In this paper, we collect human judgements of
the validity of inferences following from the in-
sertion and deletion of various classes of adjec-
tives and analyze the results. Our findings suggest
that, in practice, most sentences involving non-
subsective ANs can be safely generalized to state-
ments about the N. That is, non-subsective adjec-
tives often behave like normal, subsective adjec-
tives. On further analysis, we reveal that, when
adjectives do behave non-subsectively, they often
exhibit asymmetric entailment behavior in which
insertion leads to contradictions (ID ) ¬ fake ID)
but deletion leads to entailments (fake ID ) ID).
We present anecdotal evidence for how the en-
tailment associated with inserting/deleting a non-
subsective adjective depends on the salient prop-
erties of the noun phrase under discussion, rather
than on the adjective itself.

2 Background and Related Work

Classes of Adjectives. Adjectives are com-
monly classified taxonomically as either subsec-
tive or non-subsective (Kamp and Partee, 1995).
Subsective adjectives are adjectives which pick
out a subset of the set denoted by the unmodified
noun; that is, AN ⇢ N1. For non-subsective adjec-
tives, in contrast, the AN cannot be guaranteed to
be a subset of N. For example, clever is subsective,
and so a clever thief is always a thief. However,

1We use the notation N and AN to refer both the the nat-
ural language expression itself (e.g. red car) as well as its
denotation, e.g. {x|x is a red car}.

alleged is non-subsective, so there are many pos-
sible worlds in which an alleged thief is not in fact
a thief. Of course, there may also be many possi-
ble worlds in which the alleged thief is a thief, but
the word alleged, being non-subsective, does not
guarantee this to hold.

Non-subsective adjectives can be further di-
vided into two classes: privative and plain. Sets
denoted by privative ANs are completely disjoint
from the set denoted by the head N (AN \ N =
;), and this mutual exclusivity is encoded in the
meaning of the A itself. For example, fake is con-
sidered to be a quintessential privative adjective
since, given the usual definition of fake, a fake ID
can not actually be an ID. For plain non-subsective
adjectives, there may be worlds in which the AN
is and N, and worlds in which the AN is not an N:
neither inference is guaranteed by the meaning of
the A. As mentioned above, alleged is quintessen-
tially plain non-subsective since, for example, an
alleged thief may or may not be an actual thief.
In short, we can summarize the classes of adjec-
tives in the following way: subsective adjectives
entail the nouns they modify, privative adjectives
contradict the nouns they modify, and plain non-
subsective adjectives are compatible with (but do
not entail) the nouns they modify. Figure 1 depicts
these distinctions.

While the hierarchical classification of adjec-
tives described above is widely accepted and often
applied in NLP tasks (Amoia and Gardent, 2006;
Amoia and Gardent, 2007; Boleda et al., 2012;
McCrae et al., 2014), it is not undisputed. Some
linguists take the position that in fact privative ad-

(a) Privative (b) Plain Non-Sub. (c) Subsective

Figure 2: Observed entailment judgements for insertion (blue) and deletion (red) of adjectives. Compare
to expected distributions in Figure 1.

to receive labels of UNKNOWN in both directions.
We expect the subsective adjectives to receive la-
bels of ENTAILMENT in the deletion direction (red
car ) car) and labels of UNKNOWN in the inser-
tion direction (car 6) red car). Figure 1 depicts
these expected distributions.

Observations. The observed entailment patterns
for insertion and deletion of non-subsective adjec-
tives are shown in Figure 2. Our control sample
of subsective adjectives (Figure 2c) largely pro-
duced the expected results, with 96% of deletions
producing ENTAILMENTs and 73% of insertions
producing UNKNOWNs.3 The entailment patterns
produced by the non-subsective adjectives, how-
ever, did not match our predictions. The plain non-
subsective adjectives (e.g. alleged) behave nearly
identically to how we expect regular, subsective
adjectives to behave (Figure 2b). That is, in 80%
of cases, deleting the plain non-subsective adjec-
tive was judged to produce ENTAILMENT, rather
than the expected UNKNOWN. The examples in
Table 2 shed some light onto why this is the case.
Often, the differences between N and AN are not
relevant to the main point of the utterance. For ex-
ample, while an expected surge in unemployment
is not a surge in unemployment, a policy that deals
with an expected surge deals with a surge.

The privative adjectives (e.g. fake) also fail
to match the predicted distribution. While in-
sertions often produce the expected CONTRADIC-
TIONs, deletions produce a surprising number of
ENTAILMENTs (Figure 2a). Such a pattern does
not fit into any of the adjective classes from Fig-
ure 1. While some ANs (e.g. counterfeit money)
behave in the prototypically privative way, others

3A full discussion of the 27% of insertions that deviated
from the expected behavior is given in Pavlick and Callison-
Burch (2016).

(1) Swiss officials on Friday said they’ve launched an
investigation into Urs Tinner’s alleged role.

(2) To deal with an expected surge in unemployment,
the plan includes a huge temporary jobs program.

(3) They kept it close for a half and had a theoretical
chance come the third quarter.

Table 2: Contrary to expectations, the deletion of
plain non-subsective adjectives often preserves the
(plausible) truth in a model. E.g. alleged role 6)
role, but investigation into alleged role ) investi-
gation into role.

(e.g. mythical beast) have the property in which
N)¬AN, but AN)N (Figure 3). Table 3 pro-
vides some telling examples of how this AN)N
inference, in the case of privative adjectives, often
depends less on the adjective itself, and more on
properties of the modified noun that are at issue in
the given context. For example, in Table 3 Exam-
ple 2(a), a mock debate probably contains enough
of the relevant properties (namely, arguments) that
it can entail debate, while in Example 2(b), a mock
execution lacks the single most important property
(the death of the executee) and so cannot entail ex-
ecution. (Note that, from Example 3(b), it appears
the jury is still out on whether leaps in artificial
intelligence entail leaps in intelligence...)

5 Discussion

The results presented suggest a few important pat-
terns for NLP systems. First, that while a non-
subsective AN might not be an instance of the N
(taxonomically speaking), statements that are true
of an AN are often true of the N as well. This is
relevant for IE and QA systems, and is likely to be-
come more important as NLP systems focus more
on “micro reading” tasks (Nakashole and Mitchell,
2014), where facts must be inferred from single
documents or sentences, rather than by exploiting
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When does N entail AN?
NOT

 
^

should

She was carrying a fake gun. 
She was carrying a gun.

Don’t behave symmetrically.

The 27-year-old Gazan seeks a fake id 
to get through security checkpoints 

and find work in Cairo.

Does he seek a id? ✔

ANN

Privative 
(e.g. fake)

Plain Non-subsective 
(e.g. alleged)

ANN AN

Subsective 
(e.g. red)

Figure 1: Three main classes of adjectives. If their entailment behavior is consistent with their theoretical
definitions, we would expect our annotations (Section 3) to produce the insertion (blue) and deletion
(red) patterns shown by the bar graphs. Bars (left to right) represent CONTRADICTION, UNKNOWN, and
ENTAILMENT

While these generalizations are intuitive, there
is little experimental evidence to support them.
In this paper, we collect human judgements of
the validity of inferences following from the in-
sertion and deletion of various classes of adjec-
tives and analyze the results. Our findings suggest
that, in practice, most sentences involving non-
subsective ANs can be safely generalized to state-
ments about the N. That is, non-subsective adjec-
tives often behave like normal, subsective adjec-
tives. On further analysis, we reveal that, when
adjectives do behave non-subsectively, they often
exhibit asymmetric entailment behavior in which
insertion leads to contradictions (ID ) ¬ fake ID)
but deletion leads to entailments (fake ID ) ID).
We present anecdotal evidence for how the en-
tailment associated with inserting/deleting a non-
subsective adjective depends on the salient prop-
erties of the noun phrase under discussion, rather
than on the adjective itself.

2 Background and Related Work

Classes of Adjectives. Adjectives are com-
monly classified taxonomically as either subsec-
tive or non-subsective (Kamp and Partee, 1995).
Subsective adjectives are adjectives which pick
out a subset of the set denoted by the unmodified
noun; that is, AN ⇢ N1. For non-subsective adjec-
tives, in contrast, the AN cannot be guaranteed to
be a subset of N. For example, clever is subsective,
and so a clever thief is always a thief. However,

1We use the notation N and AN to refer both the the nat-
ural language expression itself (e.g. red car) as well as its
denotation, e.g. {x|x is a red car}.

alleged is non-subsective, so there are many pos-
sible worlds in which an alleged thief is not in fact
a thief. Of course, there may also be many possi-
ble worlds in which the alleged thief is a thief, but
the word alleged, being non-subsective, does not
guarantee this to hold.

Non-subsective adjectives can be further di-
vided into two classes: privative and plain. Sets
denoted by privative ANs are completely disjoint
from the set denoted by the head N (AN \ N =
;), and this mutual exclusivity is encoded in the
meaning of the A itself. For example, fake is con-
sidered to be a quintessential privative adjective
since, given the usual definition of fake, a fake ID
can not actually be an ID. For plain non-subsective
adjectives, there may be worlds in which the AN
is and N, and worlds in which the AN is not an N:
neither inference is guaranteed by the meaning of
the A. As mentioned above, alleged is quintessen-
tially plain non-subsective since, for example, an
alleged thief may or may not be an actual thief.
In short, we can summarize the classes of adjec-
tives in the following way: subsective adjectives
entail the nouns they modify, privative adjectives
contradict the nouns they modify, and plain non-
subsective adjectives are compatible with (but do
not entail) the nouns they modify. Figure 1 depicts
these distinctions.

While the hierarchical classification of adjec-
tives described above is widely accepted and often
applied in NLP tasks (Amoia and Gardent, 2006;
Amoia and Gardent, 2007; Boleda et al., 2012;
McCrae et al., 2014), it is not undisputed. Some
linguists take the position that in fact privative ad-

(a) Privative (b) Plain Non-Sub. (c) Subsective

Figure 2: Observed entailment judgements for insertion (blue) and deletion (red) of adjectives. Compare
to expected distributions in Figure 1.

to receive labels of UNKNOWN in both directions.
We expect the subsective adjectives to receive la-
bels of ENTAILMENT in the deletion direction (red
car ) car) and labels of UNKNOWN in the inser-
tion direction (car 6) red car). Figure 1 depicts
these expected distributions.

Observations. The observed entailment patterns
for insertion and deletion of non-subsective adjec-
tives are shown in Figure 2. Our control sample
of subsective adjectives (Figure 2c) largely pro-
duced the expected results, with 96% of deletions
producing ENTAILMENTs and 73% of insertions
producing UNKNOWNs.3 The entailment patterns
produced by the non-subsective adjectives, how-
ever, did not match our predictions. The plain non-
subsective adjectives (e.g. alleged) behave nearly
identically to how we expect regular, subsective
adjectives to behave (Figure 2b). That is, in 80%
of cases, deleting the plain non-subsective adjec-
tive was judged to produce ENTAILMENT, rather
than the expected UNKNOWN. The examples in
Table 2 shed some light onto why this is the case.
Often, the differences between N and AN are not
relevant to the main point of the utterance. For ex-
ample, while an expected surge in unemployment
is not a surge in unemployment, a policy that deals
with an expected surge deals with a surge.

The privative adjectives (e.g. fake) also fail
to match the predicted distribution. While in-
sertions often produce the expected CONTRADIC-
TIONs, deletions produce a surprising number of
ENTAILMENTs (Figure 2a). Such a pattern does
not fit into any of the adjective classes from Fig-
ure 1. While some ANs (e.g. counterfeit money)
behave in the prototypically privative way, others

3A full discussion of the 27% of insertions that deviated
from the expected behavior is given in Pavlick and Callison-
Burch (2016).

(1) Swiss officials on Friday said they’ve launched an
investigation into Urs Tinner’s alleged role.

(2) To deal with an expected surge in unemployment,
the plan includes a huge temporary jobs program.

(3) They kept it close for a half and had a theoretical
chance come the third quarter.

Table 2: Contrary to expectations, the deletion of
plain non-subsective adjectives often preserves the
(plausible) truth in a model. E.g. alleged role 6)
role, but investigation into alleged role ) investi-
gation into role.

(e.g. mythical beast) have the property in which
N)¬AN, but AN)N (Figure 3). Table 3 pro-
vides some telling examples of how this AN)N
inference, in the case of privative adjectives, often
depends less on the adjective itself, and more on
properties of the modified noun that are at issue in
the given context. For example, in Table 3 Exam-
ple 2(a), a mock debate probably contains enough
of the relevant properties (namely, arguments) that
it can entail debate, while in Example 2(b), a mock
execution lacks the single most important property
(the death of the executee) and so cannot entail ex-
ecution. (Note that, from Example 3(b), it appears
the jury is still out on whether leaps in artificial
intelligence entail leaps in intelligence...)

5 Discussion

The results presented suggest a few important pat-
terns for NLP systems. First, that while a non-
subsective AN might not be an instance of the N
(taxonomically speaking), statements that are true
of an AN are often true of the N as well. This is
relevant for IE and QA systems, and is likely to be-
come more important as NLP systems focus more
on “micro reading” tasks (Nakashole and Mitchell,
2014), where facts must be inferred from single
documents or sentences, rather than by exploiting
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Bush travels Monday to Michigan to make remarks 
on the economy.

Does N entail AN?
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Bush travels Monday to Michigan to make remarks 
on the economy.

Does N entail AN?

Bush travels Monday to Michigan to make remarks 
on the American economy.✔

Compositional Entailment in Adjective Nouns. (Pavlick and Callison-Burch ACL 2016)



Bush travels Monday to Michigan to make remarks 
on the economy.

Does N entail AN?

Bush travels Monday to Michigan to make remarks 
on the American economy.

Bush travels Monday to Michigan to make remarks 
on the Japanese economy.✘

✔
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Bush travels Monday to Michigan to make remarks 
on the economy.

Does N entail AN?

Bush travels Monday to Michigan to make remarks 
on the American economy.

Bush travels Monday to Michigan to make remarks 
on the Japanese economy.✘

✔

Compositional Entailment in Adjective Nouns. (Pavlick and Callison-Burch ACL 2016)
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Bush travels Monday to Michigan to make remarks 
on the economy.

Does N entail AN?

Bush travels Monday to Michigan to make remarks 
on the American economy.

Bush travels Monday to Michigan to make remarks 
on the Japanese economy.✘

✔

Compositional Entailment in Adjective Nouns. (Pavlick and Callison-Burch ACL 2016)

2,990 unique ANs 

Disjoint ANs in train/test

5,378 naturally-occurring sentences 

4,868 train / 510 test
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• We can acquire lexical entailments at scale… 

• …but lexical entailments are not enough. We need 
composition in order to model unseen phrases and full 
sentences.   

• Inferences involving composition is too complex to capture 
using simple heuristics, and requires models to 
incorporate context and common sense when performing 
reasoning.
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The council considered environmental consequences.
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Current Work-in-progress.
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Current Work-in-progress.

Projection through Predicates
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Current Work-in-progress.

Projection through Predicates

Identity Non-Exclusive,  
Identity

Non-Exclusive,  
Negation
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is married to likes dislikes



Last December they had argued that the council had 
failed to consider possible effects of contaminated land 

at the site.

The council considered environmental consequences.

“higher order” 
predicates

DEL(fail to)
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Gallager chose to 
accept a full scholarship 
to play football for Temple 

University. 



Implicative Verbs

She managed to fix the bug.

She fixed the bug.

Contradiction  
Entailment  
Can’t Tell

Tense Manages to Predict Implicatives. (Pavlick and Callison-Burch EMNLP 2016)
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(0.14) UFJ wants to merge with Mitsubishi, a combination that’d surpass Citigroup as the world’s biggest bank.
6) The merger of Japanese Banks creates the world’s biggest bank.

(0.55) After graduating, Gallager chose to accept a full scholarship to play football for Temple University.
) Gallager attended Temple University.

(0.68) Wilkins was allowed to leave in 1987 to join French outfit Paris Saint-Germain.
) Wilkins departed Milan in 1987.

Table 3: Examples from the RTE3 dataset (Giampiccolo et al., 2007) which require recognizing implicative behavior, even in verbs
that are not implicative by definition. The tendency of certain verbs (e.g. be allowed) to behave as de facto implicatives is captured
surprisingly well by the tense agreement score (shown in parentheses).

the main verb of a sentence, the truth of the compli-
ment could only be inferred 30% of the time. When
a verb with high tense agreement appeared as the
main verb, the truth of the compliment could be in-
ferred 91% of the time. This difference is significant
at p < 0.01. That is, tense agreement provides a
strong signal for identifying non-implicative verbs,
and thus can help systems avoid false-positive en-
tailment judgements, e.g. incorrectly inferring that
wanting to merge ) merging.

Figure 1: Whether or not compliment is entailed for main verbs
with varying levels of tense agreement. Verbs with high tense
agreement yield more definitive judgments (true/false). Each
bar represents aggregated judgements over approx. 20 verbs.

Interestingly, tense agreement accurately mod-
els verbs that are not implicative by definition, but
which nonetheless tend to behave implicatively in
practice. For example, our method finds high tense
agreement for choose to and be allowed to, which
are often used to communicate, albeit indirectly, that
their compliments did in fact happen. To convince
ourselves that treating such verbs as implicatives
makes sense in practice, we manually look through
the RTE3 dataset (Giampiccolo et al., 2007) for ex-
amples containing high-scoring verbs according to
our method. Table 3 shows some example inferences
that hinge precisely on recognizing these types of de

facto implicatives.

5 Discussion and Related Work

Language understanding tasks such as RTE (Clark
et al., 2007; MacCartney, 2009) and bias detection
(Recasens et al., 2013) have been shown to require
knowledge of implicative verbs, but such knowledge
has previously come from manually-built word lists
rather than from data. Nairn et al. (2006) and Mar-
tin et al. (2009) describe automatic systems to han-
dle implicatives, but require hand-crafted rules for
each unique verb that is handled. The tense agree-
ment method we present offers a starting point for
acquiring such rules from data, and is well-suited
for incorporating into statistical systems. The clear
next step is to explore similar data-driven means for
learning the specific behaviors of individual implica-
tive verbs, which has been well-studied from a the-
oretical perspective (Karttunen, 1971; Nairn et al.,
2006; Amaral et al., 2012; Karttunen, 2012). An-
other interesting extension concerns the role of tense
in word representations. While currently, tense is
rarely built directly into distributional representa-
tions of words (Mikolov et al., 2013; Pennington et
al., 2014), our results suggest it may offer important
insights into the semantics of individual words. We
leave this question as a direction for future work.

6 Conclusion

Differentiating between implicative and non-
implicative verbs is important for discriminating
inferences that can and cannot be made in natural
language. We have presented a data-driven method
that captures the implicative tendencies of verbs by
exploiting the tense relationship between the verb
and its compliment clauses. This method effectively
separates known implicatives from known non-
implicatives, and, more importantly, provides good
predictive signal in an entailment recognition task.

Tense Manages to Predict Implicatives. (Pavlick and Callison-Burch EMNLP 2016)

Contradiction  
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(0.14) UFJ wants to merge with Mitsubishi, a combination that’d surpass Citigroup as the world’s biggest bank.
6) The merger of Japanese Banks creates the world’s biggest bank.

(0.55) After graduating, Gallager chose to accept a full scholarship to play football for Temple University.
) Gallager attended Temple University.

(0.68) Wilkins was allowed to leave in 1987 to join French outfit Paris Saint-Germain.
) Wilkins departed Milan in 1987.

Table 3: Examples from the RTE3 dataset (Giampiccolo et al., 2007) which require recognizing implicative behavior, even in verbs
that are not implicative by definition. The tendency of certain verbs (e.g. be allowed) to behave as de facto implicatives is captured
surprisingly well by the tense agreement score (shown in parentheses).

the main verb of a sentence, the truth of the compli-
ment could only be inferred 30% of the time. When
a verb with high tense agreement appeared as the
main verb, the truth of the compliment could be in-
ferred 91% of the time. This difference is significant
at p < 0.01. That is, tense agreement provides a
strong signal for identifying non-implicative verbs,
and thus can help systems avoid false-positive en-
tailment judgements, e.g. incorrectly inferring that
wanting to merge ) merging.

Figure 1: Whether or not compliment is entailed for main verbs
with varying levels of tense agreement. Verbs with high tense
agreement yield more definitive judgments (true/false). Each
bar represents aggregated judgements over approx. 20 verbs.

Interestingly, tense agreement accurately mod-
els verbs that are not implicative by definition, but
which nonetheless tend to behave implicatively in
practice. For example, our method finds high tense
agreement for choose to and be allowed to, which
are often used to communicate, albeit indirectly, that
their compliments did in fact happen. To convince
ourselves that treating such verbs as implicatives
makes sense in practice, we manually look through
the RTE3 dataset (Giampiccolo et al., 2007) for ex-
amples containing high-scoring verbs according to
our method. Table 3 shows some example inferences
that hinge precisely on recognizing these types of de

facto implicatives.

5 Discussion and Related Work

Language understanding tasks such as RTE (Clark
et al., 2007; MacCartney, 2009) and bias detection
(Recasens et al., 2013) have been shown to require
knowledge of implicative verbs, but such knowledge
has previously come from manually-built word lists
rather than from data. Nairn et al. (2006) and Mar-
tin et al. (2009) describe automatic systems to han-
dle implicatives, but require hand-crafted rules for
each unique verb that is handled. The tense agree-
ment method we present offers a starting point for
acquiring such rules from data, and is well-suited
for incorporating into statistical systems. The clear
next step is to explore similar data-driven means for
learning the specific behaviors of individual implica-
tive verbs, which has been well-studied from a the-
oretical perspective (Karttunen, 1971; Nairn et al.,
2006; Amaral et al., 2012; Karttunen, 2012). An-
other interesting extension concerns the role of tense
in word representations. While currently, tense is
rarely built directly into distributional representa-
tions of words (Mikolov et al., 2013; Pennington et
al., 2014), our results suggest it may offer important
insights into the semantics of individual words. We
leave this question as a direction for future work.

6 Conclusion

Differentiating between implicative and non-
implicative verbs is important for discriminating
inferences that can and cannot be made in natural
language. We have presented a data-driven method
that captures the implicative tendencies of verbs by
exploiting the tense relationship between the verb
and its compliment clauses. This method effectively
separates known implicatives from known non-
implicatives, and, more importantly, provides good
predictive signal in an entailment recognition task.

}High tense agreement 
strongly predicts 

whether the truth of 
the compliment can 

be inferred. 

Tense Manages to Predict Implicatives. (Pavlick and Callison-Burch EMNLP 2016)
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