Geometries of Word Embeddings

Pramod Viswanath

University of Illinois

Natural language processing is widely used in daily life.

Natural language processing pipeline

Word is the basic unit of natural language.

Representing Words

- Atomic symbols
 - Large vocabulary size (~1,000,000 words in English)
 - Joint distributions impossible to infer

Words could be represented by vectors.

Word Vector Representations

- Word2Vec (2013)
 - Google
 - Publicly available

• **GloVe** (2014)

- Stanford NLP Pipeline
- Publicly available

Principle of Word Vector Representations

"A word is characterized by the company it keeps." — Firth '57

Similar words should have similar vector representations.

Cooccurrence matrix

A series of many genres, including fantasy, drama, coming of age,...

(series, genres) (of, genres) (many, genres) (including, genres) (fantasy, genres) (drama, genres)

context words

target words

	 genres	
series	 +1	
of	 +1	
many	 +1	
including	 +1	
fantasy	 +1	
drama	 +1	

PMI matrix is low rank

word2vec (Mikolov '13) and GloVe (Pennington '14)

target word u(w) context word v(c)

$$u(w)^{\mathrm{T}}v(c) \approx \log\left(\frac{p_{W,C}(w,c)}{p_{W}(w)p_{C}(c)}\right)$$

Word Similarity

Powerful Representations

- Lexical
- ✓ Word Similarity
- Concept Categorization
- ✓ Vector differences encode rules

```
talk - talking = eat -eating
man - king = woman -queen
France - Paris = Italy - Rome
```

This talk: Geometry of Word Vectors

- isotropy of word vectors
 - projection towards isotropy

- subspace representations of sentences/phrases
 - polysemy (prepositions)
 - idiomatic/sarcastic usages

Isotropy and Word Vectors

- Start with off-the-shelf vectors
 - Word2Vec and GloVe
 - Publicly available

- Postprocessing
 - Simple
 - Universally improves representations

Geometry of word vectors

Non-zero mean may affect the similarity between words

Spectrum of word vectors

Postprocessing

Remove the non-zero mean

$$\mu \leftarrow \frac{1}{|V|} \sum_{w \in V} v(w); \quad \tilde{v}(w) \leftarrow v(w) - \mu$$

Null the dominating D components

$$u_1, ..., u_d \leftarrow \text{PCA}(\{\tilde{v}(w), w \in V\})$$
$$v'(w) \leftarrow \tilde{v} - \sum_{i=1}^{D} \left(u_i^{\mathrm{T}} v(w)\right) u_i$$

Renders off-the-shelf representations even stronger

Lexical-level Evaluation

✓ Word Similarity

✓ Concept Categorization

Word Similarity

Assign a similarity score between a pair of words

(stock, phone) -> 1.62 (stock, market) -> 8.08

Datasets: RG65, wordSim-353, Rare Words, MEN, MTurk, SimLex-999, SimVerb-3500.

Concept Categorization

Group words into different semantic categories.

bear allocation airstream bull cat allotment blast cow drizzle credit puppy quota clemency

Datasets: ap, ESSLLI, battig

Sentence-level Evaluation

✓ Sentential Textual Similarity (STS) 2012-2016

- 21 Different datasets: pairs of sentences
 - algorithm rates similarity
 - compare to human scores

• Average improvement of **4%**

Postprocessing Generalizes

- Multiple dimensions, different hyperparameters
 - Word2Vec and GloVe
 - TSCCA and RAND-WALK

- Multiple languages
 - Spanish, German datasets
 - Universally improves representations

Top Dimensions Encode Frequency

RAND-WALK model

$$p_{W,C}(w,c) = \frac{1}{Z_0} \exp\left(\|v(w) + v(c)\|^2\right)$$

vectors v(w) are isotropic (Arora et al, '16)

PMI matrix is low-rank

$$\log \frac{p_{W,C}(w,c)}{p_W(w)p_C(c)} \propto v(w)^{\mathrm{T}}v(c)$$

Post-processing and Isotropy

Measure of isotropy

$$\frac{\min_{\|x\|=1} \sum_{w} \exp(x^{\mathrm{T}}v(w))}{\max_{\|x\|=1} \sum_{w} \exp(x^{\mathrm{T}}v(w))}$$

	before	after
word2vec	0.7	0.95
GloVe	0.065	0.6

Rounding to Isotropy

- First order approximation of isotropy measure
 - subtract the mean
- Second order approximation of isotropy measure
 - project away the top dimensions [S. Oh]
- Inherently different
 - recommendation systems, [Bullinaria and Levy, '02]
 - CCA, Perron-Frobenius theorem

Summary

- Word Vector Representations
 - Off-the-shelf Word2Vec and GloVe

- We improve them universally
 - Angular symmetry

• Other geometries?

Sentence Representations

What to preserve?

- Syntax information
 - grammar, parsing
- Paraphrasing
 - machine translation
- Downstream applications
 - text classification

Representation by Vectors

- Bag-of-words
 - frequency, tf-idf weighted frequency
- Average of word vectors:
 - Wieting et al. 2015, Huang et al. 2012, Adi et al. 2016, Kenter et al. 2016, Arora et al. 2017
- Neural networks:
 - Kim et al. 2014, Kalchbrenner et al. 2014, Sutskever et al. 2014, Le and Mikolov 2014, Kiros et al. 2015, Hill et al. 2016

Low rank Subspace

butter spread upon it by a man."

"A piece of bread,

which is big, is having

Sentence word representations lie in a low-rank subspace rank N = 4

Sentence as a Subspace

• Input: a sequence of words $\{v(w), w \in s\}$

• Compute the first N principal components

$$u_1, ..., u_N \leftarrow \text{PCA}(v(w), w \in s),$$

 $S \leftarrow [u_1, ..., u_N].$

Output: orthonormal basis [Mu, Bhat and V, ACL '17]

Similarity between Sentences

Examples

sentence pair	Ground Truth	Predicted Score
The man is doing exercises.	0.78	0.82
The man is training.	0.70	
The man is doing exercises.	0.28	0.38
Two men are hugging.	hugging.	
The man is doing exercises.	0.4	0.43
Two men are fighting.		

Semantic Textual Similarity Task

Sense Disambiguation

Polysemous Nature of Words

"crane"

Sense Representation

- supervised: aided by hand-crafted lexical resources
 - example: WordNet

• unsupervised: by inferring the senses directly from text
Disambiguation via Context

 (machine) The little prefabricated hut was lifted away by a huge crane.

 (bird) The sandhill crane (``Grus canadensis'') is a species of large crane of North America and extreme northeastern siberia.

Context Representation by Subspaces

Monosemous Intersection Hypothesis

The target word vector should reside in the intersection of all subspaces

Recovering the Intersection

- Input: a set of context $\{c\}$, the target word w
- context representations $\{S(c\setminus w)\}$
- Output: recover the vector that is "closest" to all subspaces

$$\begin{split} \hat{u}(w) &= \arg\min_{\|u\|=1} \sum_{w \in c} d(u, S(c \setminus w))^2 \\ &= \arg\min_{\|u\|=1} \sum_{w \in c} \sum_{n=1}^N \left(u^{\mathrm{T}} u_n(c \setminus w) \right)^2 \\ &\text{rank-1 PCA of } \{u_n(c \setminus w)\}_{c,n=1,\dots,N} \end{split}$$

Polysemous Intersection Hypothesis

"crane"

The context subspaces of a polysemous word intersect at different directions for different senses.

Sense Induction

- Input: Given a target polysemous word w
 - contexts $c_1, ..., c_M$ number indicating the number of senses K

• Output: partition the M contexts into K sets $S_1, ..., S_K$

$$\min_{u_1,...,u_K,S_1,...,S_K} \sum_{k=1}^K \sum_{c \in S_k} d^2(u_k, S(c \setminus w)).$$

K-Grassmeans

- Initialization: randomly initialize K unit-length vectors $u_1, ..., u_K$
- Expectation: group contexts based on the distance to each intersection direction

$$S_k \leftarrow \{c_m : d(u_k, S(c_m \setminus w)) \le d(u_{k'}, S(c_m \setminus w)) \; \forall k'\}, \forall k.$$

• Maximization: update the intersection direction for each group based on the contexts in the group.

$$u_k \leftarrow \arg\min_u \sum_{c \in S_k} d^2(u, S(c \setminus w))$$

Sense Disambiguation

- Input: Given a new context instance for a polysemous word
- Output: identify which sense this word means in the context.

Can you hear me? You're on the **air**. One of the great moments of live television, isn't it?

Soft & Hard Decoding

Soft Decoding: output a probability distribution

$$P(w,c,k) = \frac{\exp(-d(u_k(w), S(c \setminus w)))}{\sum_{k'} \exp(-d(u_{k'}(w), S(c \setminus w)))}$$

Hard Decoding: output a deterministic classification

$$k^* = \arg\min_k d(u_k(w), S(c \setminus w))$$

SemEval Share Tasks

[Mu, Bhat and V, ICLR '17]

Two Applications

- Rare Senses
 - Idiomaticity

- Frequent Senses
 - Prepositions

Big Fish

There are many living big fish species in the ocean.

He enjoys being a big fish, playing with politicians.

Non-Compositionality

- (English) He enjoys being a big fish, playing with the politicians.
- (Chinese) 在 當時 人 們看 來 , 有 文化 , 有 墨 水 的 人 , 就 是 知 識 分子 。
- (German) In Bletchley Park gab es keinen Maulwurf mit einer Ausnahme, John Cairncross, aber der spionierte f
 ür Stalin.

Motivation

- Non-compositionality in natural language
 - very frequent
 - embodies the creative process
 - applications: information retrieval, machine translation, sentiment analysis, etc.
- Question: Detect idiomaticity
- Challenge: context dependent

Previous Works

- Linguistic resources
 - Wikitionary: list definitions
 - WordNet: lexical supersenses
 - Psycholinguistic database: infer feelings conveyed
- Our contribution: integrate with polysemy

View idiomaticity as a rare sense

Compositional or Not

 (Compositional) Knife has a cutting edge, a sharp side formed by the intersection of two surfaces of an object

 (Idiomatic) Utilize his vast industry contacts and knowledge while creating a cutting edge artworks collection

Geometry of Context Words

Geometry of Context Subspace

sentence subspace
 -- compositional

• cutting edge"

sentence subspace
 -- idiomatic

Geometry of Context Subspace

• cutting edge"

- sentence subspace
 -- compositional
- sentence subspace
 -- idiomatic

- Idiomaticity score:
 - distance between target phrase and context

Subspace-based Algorithm

- Principal Component Analysis (PCA) of sentence word vectors^[1]
 - Subspace representation
- Compositionality: distance between target word/ phrase and subspace
- Test: Idiomatic if distance > threshold

Subspace-based Algorithm

- NO linguistic resources
- Multilingual: English, German and Chinese
- Context sensitive
- Accurate detection in extensive experiments

Ironic

I Love going to the dentist! Looking forward to it all week.

• Non-ironic

Love to hear that youthcamp was so awesome!

Subspace-based Algorithm

- sentence subspace
 -- non-irony
- sentence subspace -- irony

Irony detection: distance from target phrase to context space

Metaphor

 Figurative speech that refers to one thing by mentioning another

Metaphor

They often wear an attitude that says – 'I can get away with anything'

Non-Metaphor

We always wear helmets when we are riding bikes

Geometry of Metaphor

Metaphor detection: distance from target phrase to context space

Common Umbrella of Compostionality

- Idiomaticity Detection
- Irony Detection
- Metaphor Detection
 - Context dependent [Gong, Bhat and V, AAAI '17]

Experiments: Idioms

- Given: bigram phrase and context
- Goal: decide idiomatic or not
- Standard Datasets:
 - English: English Noun Compounds, e.g., cash cow English Verb Particle Compounds, e.g., fill up
 - GNC: German Noun Compounds, e.g., maulwurf
 - Chinese: Chinese Noun Compounds, e.g., 墨水

Idiomaticity Detection Results

Dataset	Method	F1 score (%)
ENC Dataset	State-of-art	75.5
	This talk	84.2
EVPC Dataset	State-of-art	39.8
	This talk	46.2
GNC Dataset	PMI	61.1
	This talk	62.4

Dataset	Method	Accuracy (%)
Chinese Dataset	Baseline	78.1
	This talk	88.3

Prepositions: Polysemous Nature

"in" has 15 senses:

- Manner or degree: *in all directions*
- Time frame: *in 2017*
- Things entered: *in the mail*
- Things enclosed: *in the United States*
- Profession aspects: *in graduate studies*
- Variable quality: *in a jacket*

•

Context Implying True Sense

His band combines professionalism with humor. (Accompanier)

She blinked with confusion. (Manner & Mood)

He washed a small red teacup with water. (Means)

Feature Selection for Disambiguation

Left context feature: average of left context

Right context feature: average of right context

Context-interplay feature: the vector closest to both left and right context space

Intrinsic Evaluation

- SemEval dataset^[1]: 34 prepositions instantiated by 24,663 sentences covering 332 sense
- Oxford English Corpus (OEC) dataset^[2]: 7,650 sentences collected from Oxford dictionary
- Spatial relation dataset^[3]: 5 fine-grained spatial relations with 400 sentences

[1,2] Kenneth C Litkowski and Orin Hargraves. 2005. The Preposition Project.[3] Samuel Ritter, et al. 2015. Leveraging preposition ambiguity to assess compositional distributional models of semantics.

Intrinsic Evaluation: SemEval

System	Resources	Accuracy
Our system	English corpus	0.80
Litkowski, 2013	Lemmatizer, dependency parser	0.86
Srikumar and Roth, 2013	dependency parser, WordNet	0.85
Gonen and Goldberg, 2016	multilingual corpus, aligner, dependency parser	0.81
Ye and Baldwin, 2007	chunker, WordNet dependency parser	0.69

Intrinsic Evaluation: OEC

System	Resources	Accuracy
Our system	English corpus	0.40
Litkowski, 2013	Lemmatizer, dependency parser, WordNet	0.32
Intrinsic Evaluation: Spatial Relation

Preposition	Spatial Relation	Example
in	Full Containment	apple in the bag
	Partial Containment	finger in the ring
on	Adhesion to Vertical Surface	sign on the building
	Support by Horizontal Surface	leaf on the ground
	Support from Above	bat on the branch

Our system achieves an accuracy of 77.5%, compared with 71% achieved by the state-of-art

Extrinsic Evaluation

- Light-weight disambiguation system
 no reliance on external linguistic resources
- Efficient scaling to enrich large corpus
 train sense representations
- Extrinsic evaluation
 - semantic relation
 - paraphrasing of phrasal verbs

Extrinsic Evaluation: Semantic Relation

Sense representations encode relations

in (Location) + Korea ~ Korean

from (RangeStart) + Rome ~ Italy

Extrinsic Evaluation: Paraphrasing

to **fight for** (sense: Benefits) the first prize ~ to **win** the first prize

to **fight for** (sense: Purpose) legal rights

~to defend legal rights

Conclusion

- Geometries of word vectors
 - Angular symmetry
 - better representations

- Geometry of polysemy
 - subspace
 representations
 - idiomaticity detection preposition vectors

- Fun:
 - modeling, algorithms, language

Collaborators

Hongyu Gong

Jiaqi Mu

Suma Bhat